Skip to article frontmatterSkip to article content

Examples, exercises & solutions

Exercises

Answers

Solution to Exercise 1
planetrelative massrelative distance to the sundistance CM to center of sun (km)
Mercurius0.060.3910
Venus0.820.72265
Earth1.001.00450
Mars0.111.5275
Jupiter317.85.20$743 \cdot 10^3$
Saturnus095.29.54$409 \cdot 10^3$
Uranus14.619.22$126 \cdot 10^3$
Neptunus17.230.06$234 \cdot 10^3$
Solution to Exercise 2

We set up the equation of motion for the particles:

m1:m1v˙1=FeFrm1:m2v˙2=Fe+Fr\begin{split} m_1: m_1 \dot{v}_1 &= F_e - F_r \\ m_1: m_2 \dot{v}_2 &= F_e + F_r \end{split}

Add these two equations:

MV˙=m1v˙1+m2v˙2=2FeV˙=2Fem1+m2=2Fe3mM\dot{V} = m_1 \dot{v}_1 + m_2 \dot{v}_2 = 2F_e \rightarrow \dot{V} = \frac{2F_e}{m_1+m_2} = \frac{2F_e}{3m}

As expected, we see that the repelling mutual force has no effect on the center of mass. We can solve this equation, using the initial condition the MV(0)=m1v1(0)+m2v2(0)V(0)=mv0+2mv0m+2m=v0MV(0) = m_1v_1(0) + m_2 v_2(0) \rightarrow V(0) = \frac{mv_0 + 2mv_0}{m+2m} = v_0

V(t)=2Fe3mt+C1=2Fe3mt+v0V(t) = \frac{2F_e}{3m} t + C_1 = \frac{2F_e}{3m} t + v_0

As the next step we calculate R(t)R(t):

R˙V=v0+2Fe3mtR(t)=v0t+Fe3mt2+C2\dot{R} \equiv V = v_0 + \frac{2F_e}{3m} t \rightarrow R(t) = v_0 t + \frac{F_e}{3m} t^2 + C_2

The initial condition is: R(0)=m1x1(0)+m2x2(0)m1+m2=13x10+23x20R(0) = \frac{m_1 x_1(0) + m_2 x_2(0)}{m_1+m_2} = \frac{1}{3}x_{10} + \frac{2}{3}x_{20}.

This gives

R(t)=13x10+23x20+v0t+Fe3mt2R(t) = \frac{1}{3}x_{10} + \frac{2}{3}x_{20} + v_0 t + \frac{F_e}{3m} t^2
Solution to Exercise 3

The center of mass of two point masses is on the line connecting m1m_1 and m2m_2. We denote this line as the xx-axis, with m1m_1 as the origin.

  • The center of mass is than given by (with m1m_1 = 3kg, m2m_2 = 2kg, x1x_1=0 and x2=x1+Lx_2 = x_1 + L = 0.5m):
xcm=m1x1+m2x2m1+m2=0.2mx_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} = 0.2m
  • The reduced mass is given by:
μm1m2m1+m2=65kg\mu \equiv \frac{m_1 m_2}{m_1 + m_2} = \frac{6}{5} kg
Solution to Exercise 4

This is a 1-dimensional problem.

  • The velocity of the center of mass is:
Vcm=m1v1+m2v2m1+m2=45m/sV_{cm} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} = \frac{4}{5}m/s
  • The reduced mass is given by:
μm1m2m1+m2=120kg\mu \equiv \frac{m_1 m_2}{m_1 + m_2} = 120 kg
  • In the CM frame the velocities of the cars are:
v1=v1Vcm=7.2m/sv2=v2Vcm=4.8m/s\begin{split} v_1' & = v_1 - V_{cm} = 7.2m/s \\ v_2' & = v_2 - V_{cm} = -4.8m/s \end{split}
Solution to Exercise 5

Cart 1: mass m1m_1 = 2kg, velocity v1v_1 = 4m/s
Cart 2: mass m2m_2 = 3kg, velocity v2v_2 = -2m/s

  • The total kinetic energy in the lab frame is
Ekin=12m1v12+12m2v22=22JE_{kin} = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = 22 J
  • The velocity of the center of mass is
Vcmm1v1+m2v2m1+m2=0.4m/sV_{cm} \equiv \frac{m_1v_1 + m_2 v_2}{m_1 + m_2} = 0.4 m/s
  • The total kinetic energy in the center-of-mass frame is
Ekin,CM=12m1v12+12m2v22E_{kin,CM} = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2

with

v1=v1Vcm=3.6m/sv2=v2Vcm=2.4m/s\begin{split} v_1' &= v_1 - V_{cm} = 3.6 m/s \\ v_2' &= v_2 - V_{cm} = -2.4 m/s \end{split}

Thus

Ekin,CM=21.6JE_{kin,CM} = 21.6 J
  • The reduced mass is
μm1m2m1+m2=1.2kg\mu \equiv \frac{m_1 m_2}{m_1 + m_2} = 1.2 kg

The relative velocity is

vrelv1v2=6m/sv_{rel} \equiv v_1 - v_2 = 6 m/s

The kinetic energy associated with the motion of the reduced mass (i.e. the kinetic energy in the CM frame) is:

Ekin,rel12μvrel2=21.6JE_{kin, rel} \equiv \frac{1}{2} \mu v_{rel}^2 = 21.6J

as we expected.

Exercises

Answers

Solution to Exercise 6

The position of the center of mass is

Rimixiimi=(m1x1)x^+(m2x2)x^+(m3y3)y^m1+m2+m3=29[m]x^+19[m]y^\vec{R} \equiv \frac{\sum_i m_i \vec{x}_i}{\sum_i m_i} = \frac{(m_1 x_1) \hat{x} + (m_2 x_2) \hat{x} + (m_3 y_3) \hat{y}}{m_1 + m_2 + m_3} = -\frac{2}{9}[m] \hat{x} + \frac{1}{9}[m]\hat{y}

where [m][m] indicates that the unit is meters.

Note: x^\hat{x} and y^\hat{y} do not carry units!

Solution to Exercise 7

width: 350px align: center

Four particles moving on a line.

  • Velocity of the center of mass:
    V=imiviimi\vec{V} = \frac{\sum_i m_i \vec{v}_i}{\sum_i m_i}
    Since the velocities are all parallel to the xx-axis, we can drop the vector notation. Substituting the data for mass and velocity, gives:
Vx=4mv+6mv+6mv+4mv4m+3m+2m+m=2vV_x = \frac{4mv + 6mv + 6mv + 4mv}{4m + 3m + 2m + m} = 2v
  • Position of the center of mass:
    V=dRdtR(t)=2vtx^+c\vec{V} = \frac{d\vec{R}}{dt} \rightarrow \vec{R}(t) = 2vt \hat{x} +\vec{c}
    At t=0t=0 all particles at location (0,y0)(0,y_0). Thus, we find
R(t)=2vtx^+y0y^\vec{R}(t) = 2vt \hat{x} + y_0\hat{y}
  • Total angular momentum:
Ltot=ili=y04mvz^+y03m2vz^+y02m3vz^+y0m4vz^=20mvy0z^\begin{split} \vec{L_{tot}} &= \sum_i \vec{l}_i \\ &= y_0 \cdot 4mv \hat{z} +y_0 \cdot 3m\cdot 2v \hat{z} + y_0 \cdot 2m\cdot 3v \hat{z} + y_0 \cdot m \cdot 4v \hat{z} \\ & = 20mvy_0 \hat{z} \end{split}
  • Angular momentum associated with the center of mass:
L=R×MV=y010m2vz^=20mvy0z^\vec{L} = \vec{R} \times M\vec{V} = y_0 10m \cdot 2v \hat{z} = 20mvy_0 \hat{z}

which is indeed the same as the total angular momentum. This is in this case to be expected as the angular momentum seen from the CM frame is L=0\vec{L}' = 0 as in the CM frame the position vector and momentum vector are parallel for all four particles.

Solution to Exercise 8

We split the kinetic energy in the kinetic energy associated with the center of mass and the kinetic energy as seen from the CM frame:

Ekin=12MV2+EkinE_{kin} = \frac{1}{2}MV^2 + E'_{kin}

Due to symmetry, the center of mass velocity is VV.

In the CM frame, all particles rotate with ω\omega and thus have a velocity of magnitude v=ωRv' = \omega R. As all particles have the same mass, we have M=8mM = 8m. The kinetic energy is:

Ekin=128V2+812mω2R2=4mV2+4mR2ω2E_{kin} = \frac{1}{2}8V^2 + 8 \cdot \frac{1}{2}m \omega^2 R^2 = 4mV^2 +4mR^2 \omega^2
Solution to Exercise 9

All nitrogen molecules feel gravity and have interaction with each other and with the wall of the container. If we write down the equation of motion for all molecules (labelled ii) and the container we get:

Mcxc¨=Mcg+iFmolecule  i  on  vessel  wallmixi¨=mig+Fvessel  wall  on  molecule  i+jiFji\begin{split} M_c \ddot{\vec{x}_c} &= M_c \vec{g} + \sum_i \vec{F}_{molecule \; i \; on \; vessel \; wall} \\ m_i \ddot{\vec{x}_i} & = -m_i \vec{g} + \vec{F}_{ vessel \; wall \;on \; molecule \; i} +\sum_{j\neq i} \vec{F}_{ji} \end{split}

with Fmolecule  i  on  vessel  wall\vec{F}_{molecule \; i \; on \; vessel \; wall} the force of molecule ii on the vessel wall and Fji\vec{F}_{ji} the force from molecule jj on molecule ii. All these forces are internal forces and when summing over all particles (including the vessel) will cancel each other as they all obey N3.

Thus is we add the equations, we find:

ddt(Mcxc˙+imixi˙)=(Mc+mi)g\frac{d}{dt} \left ( M_c \dot{\vec{x}_c} + \sum_i m_i \dot{\vec{x}_i} \right ) = \left ( M_c + \sum m_i\right ) \vec{g}

On the left side, we recognize the total momentum which we can write in terms of the center of mass: Mcxc˙+imixi˙=MVM_c \dot{\vec{x}_c} + \sum_i m_i \dot{\vec{x}_i} = M\vec{V}.

And on the right hand side we see the total mass M=Mc+miM = M_c + \sum m_i.

Thus, we conclude:

MV˙=MgV˙=gM\dot{\vec{V}} = M\vec{g} \rightarrow \dot{V} = -g

The entire container drops with acceleration g-g.

Solution to Exercise 10

:label: fig:Dustparticles_animation.gif width: 350px align: center

30 particles: left motion of the center of mass, right motion of all particles.