Skip to article frontmatterSkip to article content

6.2.1Exercises, examples & solutions

6.2.1.1Worked Examples

6.2.1.2Exercises

6.2.1.3Answers

Solution to Exercise 1

Prior to the disintegration, particle MM has 4-momentum:

Piμ=(Mc,0)P_i^\mu = \left ( Mc, 0 \right )

After the disintegration, we have two particles with 4-momentum:

P1,aμ=(14M54c,14M5435c)P_{1,a}^\mu = \left ( \frac{1}{4}M \frac{5}{4}c, \frac{1}{4}M \frac{5}{4}\frac{3}{5}c \right )

and

P2,aμ=(m2γ2c,m2γ2u2)P_{2,a}^\mu = \left ( m_2 \gamma_2 c, m_2 \gamma_2 u_2 \right )

From conservation of momentum we get:

1=516+m2Mγ2m2Mγ2=11160=316+m2Mγ2u2cm2Mγ2u2c=316\begin{split} 1 &= \frac{5}{16} + \frac{m_2}{M} \gamma_2 \rightarrow \frac{m_2}{M} \gamma_2 = \frac{11}{16}\\ 0 &= \frac{3}{16} + \frac{m_2}{M} \gamma_2 \frac{u_2}{c} \rightarrow \frac{m_2}{M} \gamma_2 \frac{u_2}{c} = -\frac{3}{16} \end{split}

Take the ratio of the last two equations:

u2c=311\frac{u_2}{c} = -\frac{3}{11}

and from this we find

m2M=4716\frac{m_2}{M} = \frac{4\sqrt{7}}{16}

Thus, we see that the mass after the disintegration is 14M+4716M0.911<M\frac{1}{4}M + \frac{4\sqrt{7}}{16}M \approx 0.911 \lt M.

Solution to Exercise 2

Before the absorption of the photon the 4-momentum is:

Piμ=(hfc,hfc)+(mc,0)=(2mc,mc)P_i^\mu = \left ( \frac{hf}{c}, \frac{hf}{c}\right) + \left ( mc, 0 \right ) = \left ( 2mc, mc \right )

After emitting the photon, the particle has mass MM and velocity uu. The emitted photon has as frequency f~\tilde{f} and 4-momentum (hf~c,hf~c)=(14mc,14mc)\left ( \frac{h\tilde{f}}{c}, -\frac{h\tilde{f}}{c} \right ) = (\frac{1}{4}mc, -\frac{1}{4}mc) . The total momentum after the process is:

Pfμ=(14mc+Mγc,14mc+Mγu)P_f^\mu = \left ( \frac{1}{4}mc + M \gamma c, -\frac{1}{4}mc + M \gamma u \right )

Since 4-momentum is conserved, we find:

2mc=14mc+Mγcmc=14mc+Mγu\begin{split} 2mc &= \frac{1}{4}mc + M \gamma c \\ mc &= -\frac{1}{4}mc + M \gamma u \end{split}

We rearrange the two above equations:

Mγc=74mcMγu=54mc\begin{split} M \gamma c &= \frac{7}{4}mc \\ M \gamma u &= \frac{5}{4}mc \end{split}

If we divide the second equation by the first, we have:

uc=57\frac{u}{c} = \frac{5}{7}

The mass of the particle is:

M=74γm=126mM = \frac{7}{4 \gamma }m = \frac{1}{2} \sqrt{6} \,m
Solution to Exercise 3

Initially, the 4-Momentum is

Piμ=(Mγ(v)c,Mγ(v)v)P^\mu_i = \left ( M\gamma(v) c, M\gamma(v) v\right )

with

vc=1213γ(v)=135\frac{v}{c} = \frac{12}{13} \rightarrow \gamma(v) = \frac{13}{5}

After the decay, we have

Pfμ=(mγ(u)c+hfc,mγ(u)u+hfcf^)P^\mu_f = \left ( m\gamma(u) c + \frac{hf}{c}, m\gamma(u) u + \frac{hf}{c} \hat{f}\right )

with f^\hat{f} a unit vector pointing in the ±x\pm x-direction. We know uc=45γ(u)=53\frac{u}{c} = \frac{4}{5} \rightarrow \gamma(u) = \frac{5}{3}. Conservation of 4-momentum now leads to::

53mc+hfc=135Mc43mc±hfc=125Mc\begin{split} \frac{5}{3}mc +\frac{hf}{c} &= \frac{13}{5}Mc \\ \frac{4}{3}mc \pm \frac{hf}{c} &= \frac{12}{5}Mc \end{split}

We still need to find out which direction the photon travels: parallel to mm or in the opposite direction. According to the above conservation of 4-momentum both seem possible. We require that in the above f>0f \gt 0.

First we inspect the negative sign of ±:

53mc+hfc=135Mc43mchfc=125Mc\begin{split} \frac{5}{3}mc +\frac{hf}{c} &= \frac{13}{5}Mc \\ \frac{4}{3}mc - \frac{hf}{c} &= \frac{12}{5}Mc \end{split}

If we solve for ff, we get f<0f \lt 0, which conflicts our requirement. That leaves us with the ++sign:

53mc+hfc=135Mc43mc+hfc=125Mc\begin{split} \frac{5}{3}mc +\frac{hf}{c} &= \frac{13}{5}Mc \\ \frac{4}{3}mc + \frac{hf}{c} &= \frac{12}{5}Mc \end{split}

Solving for mm gives: m=35Mm = \frac{3}{5}M. If we plug this back in, we find for the photon hf=85Mc2hf = \frac{8}{5}Mc^2.

Solution to Exercise 4

The total 4-momentum before the collision is

Piμ=(2mγc,12mγc,12mγc) with γ=233P_i^\mu = \left ( 2m\gamma c, \frac{1}{2} m\gamma c, \frac{1}{2} m\gamma c \right ) \text{ with } \gamma = \frac{2}{3} \sqrt{3}

After the collision, we have only one particle with 4-momentum

Pfμ=(Mγfc,Mγfux,Mγfuy) with γf=11ux2+uy2c2P_f^\mu = \left ( M \gamma_f c, M\gamma_f u_x, M\gamma_f u_y \right ) \text{ with } \gamma_f = \frac{1}{\sqrt{1 - \frac{u_x^2 + u_y^2}{c^2}}}

In this process, 4-momentum is conserved.

From P1P^1 and P2P^2 we get

12mγc=Mγfux12mγc=Mγfuy\begin{split} \frac{1}{2} m\gamma c &= M\gamma_f u_x \\ \frac{1}{2} m\gamma c &= M\gamma_f u_y \end{split}

hence, ux=uyu_x = u_y. The new particle moves over the line x=yx=y.

If we combine P0P^0 with P1P^1, we find:

2mγc=Mγfc12mγc=Mγfux\begin{split} 2 m\gamma c &= M\gamma_f c \\ \frac{1}{2} m\gamma c &= M\gamma_f u_x \end{split}

This gives uxc=14\frac{u_x}{c} = \frac{1}{4}. Thus, the new particle moves with velocity u=14cx^+14cy^\vec{u} = \frac{1}{4}c \hat{x} + \frac{1}{4}c \hat{y}. We find its mass by calculating γf=112116=227\gamma_f = \frac{1}{\sqrt{1-2\frac{1}{16}}} = 2\sqrt{\frac{2}{7}} and using this in the P0P^0 equation:

2mγc=MγfcM=143m2m\gamma c = M\gamma_f c \rightarrow M = \sqrt{\frac{14}{3}}m
Solution to Exercise 5

a. In classical mechanics, we use -for this type of collision- conservation of momentum and of kinetic energy. This gives us:

p:35m45c45m35c=35mu+45mUU=34uEkin:1235m(45c)2+1245m(35c)2=1235mu2+1245mU2\begin{split} p: \,\,\,\,\frac{3}{5}m \frac{4}{5}c - \frac{4}{5}m \frac{3}{5}c &= \frac{3}{5}m u + \frac{4}{5}m U \rightarrow U = -\frac{3}{4}u\\ E_{kin}: \,\,\,\,\, \frac{1}{2}\frac{3}{5}m \left (\frac{4}{5}c \right )^2 + \frac{1}{2}\frac{4}{5}m \left (\frac{3}{5}c \right )^2 &= \frac{1}{2}\frac{3}{5}m u^2 + \frac{1}{2}\frac{4}{5}m U^2 \end{split}

This set has as solution (not surprising): u=45c,U=35cu = -\frac{4}{5}c, U = \frac{3}{5}c.

b. Now we use 4-momentum conservation:

Piμ=(35m53c,35m5345c)+(45m54c,45m5435c)=(2mc,15mc)P_i^\mu = \left ( \frac{3}{5}m \frac{5}{3}c, \frac{3}{5}m \frac{5}{3}\frac{4}{5}c \right ) + \left ( \frac{4}{5}m \frac{5}{4}c, -\frac{4}{5}m \frac{5}{4} \frac{3}{5}c \right ) = \left ( 2mc, \frac{1}{5}mc \right )

Note: the spatial part of momentum is thus non-zero, in contrast to the classical case.

After the collision we have:

Pfμ=(35mγ1c,35mγ1u)+(45mγ2c,45mγ2U)P_f^\mu = \left ( \frac{3}{5}m \gamma_1 c, \frac{3}{5}m \gamma_1 u \right ) + \left ( \frac{4}{5}m \gamma_2 c, -\frac{4}{5}m \gamma_2 U \right )

with

γ1=11u2c2 and γ2=11U2c2\gamma_1 = \frac{1}{\sqrt{1-\frac{u^2}{c^2}}} \text{ and } \gamma_2 = \frac{1}{\sqrt{1-\frac{U^2}{c^2}}}

Next, we use conservation of 4-momentum: Piμ=PfμP_i^\mu = P_f^\mu. This is, however, hard to do analytical! Thus we use either a graphical or numerical method. If you do this, you will find:

u=0.7355c and  U=+0.8050cu = - 0.7355c \text{\,\,\,\,\, and \,\,\,\,\, } U = + 0.8050 c