Skip to article frontmatterSkip to article content

5.7.1Exercises, examples & solutions

5.7.1.1Exercises

5.7.1.2Answers

Solution to Exercise 1

According to SS'

U0=γ(U)c=419cU1=γ(U)U=409c\begin{split} U'_0 &= \gamma(U')c = \frac{41}{9} c \\ U'_1 &= \gamma(U') U' = \frac{40}{9} c \end{split}

LT to SS using γ(V)=135\gamma (V) = \frac{13}{5}:

U0=γ(V)(U0+VcU1))=135(419c+1213409c)=101345cU1=γ(V)(U1+VcU0))==135(409c+1213419c)=101245c\begin{split} U_0 &= \gamma(V) \left ( U'_0 + \frac{V}{c} U'_1) \right ) = \frac{13}{5} \left ( \frac{41}{9} c + \frac{12}{13} \frac{40}{9} c \right ) = \frac{1013}{45}c\\ U_1 &= \gamma(V) \left (U'_1 + \frac{V}{c} U'_0) \right ) = = \frac{13}{5} \left ( \frac{40}{9} c + \frac{12}{13} \frac{41}{9} c \right ) = \frac{1012}{45}c \end{split}

We find uxu_x by taking the ratio U1U0=γ(U)uγ(U)c\frac{U_1}{U_0} = \frac{\gamma(U)u}{\gamma(U)c}:

ux=10121013c<1uy=uz=0\begin{split} u_x &= \frac{1012}{1013} c \lt 1\\ u_y &= u_z =0 \end{split}
Solution to Exercise 2

According to SS'

U0=γ(U)c=419cU1=0U2=γ(U)U=409c\begin{split} U'_0 &= \gamma(U')c = \frac{41}{9} c \\ U'_1 &= 0 \\ U'_2 &= \gamma(U') U' = \frac{40}{9} c \end{split}

LT naar SS using γ(V)=135\gamma (V) = \frac{13}{5}:

U0=γ(V)(U0+VcU1))=135(419c+0)=53345cU1=γ(V)(U1+VcU0))==135(0+1213419c)=49245cU2=U2=409c\begin{split} U_0 &= \gamma(V) \left ( U'_0 + \frac{V}{c} U'_1) \right ) = \frac{13}{5} \left ( \frac{41}{9} c + 0 \right ) = \frac{533}{45}c\\ U_1 &= \gamma(V) \left (U'_1 + \frac{V}{c} U'_0) \right ) = = \frac{13}{5} \left ( 0 + \frac{12}{13} \frac{41}{9} c \right ) = \frac{492}{45}c \\ U_2 &= U'_2 = \frac{40}{9} c \end{split}

We find uxu_x by taking the ratio U1U0=γ(U)uxγ(U)c\frac{U_1}{U_0} = \frac{\gamma(U)u_x}{\gamma(U)c}:

ux=492533cu_x = \frac{492}{533} c

Similarly:

uy=U2U0=γ(U)uyγ(U)c=40533cu_y = \frac{U_2}{U_0} = \frac{\gamma(U)u_y}{\gamma(U)c} = \frac{40}{533}c

The magnitude of the velocity according to S4S4 is

u=ux2+uy2=243664284089c0.93c<1cu =\sqrt{u^2_x + u^2_y} = \sqrt{\frac{243664}{284089}} c \approx 0.93 c \lt 1 c
Solution to Exercise 3

According to SS' the photon is send at E1:(ct1,x1)=(0,1)lsE_1: (ct'_1, x'_1 ) = (0, 1) ls. Thus, it is received at E2:(ct2,x2)=(1,0)E_2: (ct'_2, x'_2 ) = (1,0). Hence, for SS event E1E_1 has coordinates:

ct1=54(0+351)=34lsx1=54(1+350)=54ls\begin{split} ct_1 &= \frac{5}{4} \left ( 0 + \frac{3}{5} 1 \right ) = \frac{3}{4} ls \\ x_1 &= \frac{5}{4} \left ( 1 + \frac{3}{5} 0 \right ) = \frac{5}{4} ls \end{split}

and thus, SS receives this photon at (ct3,x3)=(2,0)ls(ct_3, x_3) = ( 2, 0)ls.

For SS' the 4-Momentum of the photon is: (hf0c,hf0c)\left ( \frac{hf_0}{c}, -\frac{hf_0}{c}\right ). If we transform this to the frame of SS, we get:

hfc=54(hf0c+35hf0c)=12hf0cf=12f0\frac{hf}{c} = \frac{5}{4} \left ( \frac{hf_0}{c} + \frac{3}{5} \cdot -\frac{hf_0}{c} \right ) = \frac{1}{2}\frac{hf_0}{c} \Rightarrow f =\frac{1}{2}f_0
Solution to Exercise 4

In this case for SS' the 4-momentum of the photon is:

Pμ=(hf0c,0,±hf0c,0)P'^\mu = \left ( \frac{hf_0}{c},0, \pm \frac{hf_0}{c}, 0 \right )

If we translate this to the world of SS, we need to realize that momentum is a vector and that the spatial parts, i.e. P1,P2,P3P^1, P^2, P^3 form a 3-vector. In this case, there is no zz-component and we can write the xx and yy-components as the length of the vector times a cos\cos and a sin\sin, respectively:

hfc=54(hf0c+350)=54hf0chfccosα=54(0+35hf0c)=34hf0chfcsinα=±hf0c\begin{split} \frac{hf}{c} &= \frac{5}{4} \left (\frac{hf_0}{c} + \frac{3}{5} 0 \right ) = \frac{5}{4} \frac{hf_0}{c}\\ \frac{hf}{c} \cos \alpha & = \frac{5}{4} \left ( 0 + \frac{3}{5}\frac{hf_0}{c}\right ) = \frac{3}{4} \frac{hf_0}{c}\\ \frac{hf}{c} \sin \alpha & = \pm \frac{hf_0}{c} \end{split}

Thus, from the time-like component we conclude: f=54f0f = \frac{5}{4}f_0. This should be in agreement with the spatial components. Let’s check:

h2f2c2=h2f2c2cos2α+h2f2c2sin2α=3242h2f02c2+h2f02c2=5242h2f02c2\begin{split} \frac{h^2f^2}{c^2} &= \frac{h^2f^2}{c^2} \cos^2 \alpha + \frac{h^2f^2}{c^2} \sin^2 \alpha \\ &= \frac{3^2}{4^2} \frac{h^2f_0^2}{c^2} + \frac{h^2f_0^2}{c^2} \\ &= \frac{5^2}{4^2} \frac{h^2f_0^2}{c^2} \end{split}

Indeed, the two spatial components are in agreement with the time-like one.

Finally, we have that according to SS, the photon travels at an angle tanα=±43α=±53.13\tan \alpha = \pm \frac{4}{3} \rightarrow \alpha = \pm 53.13^\circ with the xx-axis.