Falling particle

We use a simple numerical scheme to compute the velocity and position of the particle. It is not the best numerical scheme, but if suffices for our purpose. We try to find a new value for the velocity and for the position by letting the time advance by a small value of dt.

The basic idea is that we solve a first order differential equation by reworking its mathematical definition to 'taking the limit of dt almost to zero'.

Suppose we have a differential equation of the form

$$\frac{d\mathbf{x}}{dt} = f \Rightarrow \frac{x(t+dt) - x(t)}{dt} \approx f(t) \Rightarrow x(t+dt) \approx x(t) + f(t) * dt$$

In computer coding it is easier to number the elements of x and use as notation x[i]. This means the value of x corresponding to time t[i]. The latter is t[i] = t[i-1]+dt = i*dt

We apply the above to N2 by writing it as:

$$\frac{dv}{dt} = F/m \Rightarrow v[i] = v[i-1] + \frac{F[i-1]}{m}dt$$

The smaller the value of dt, the more accurate our calculation. From the definition of the velocity, we can find the position:

$$\mathbf{v} = \frac{d\mathbf{x}}{dt} \Rightarrow \mathbf{x}[i] = \mathbf{x}[i-1] + \mathbf{v}[i-1]dt$$

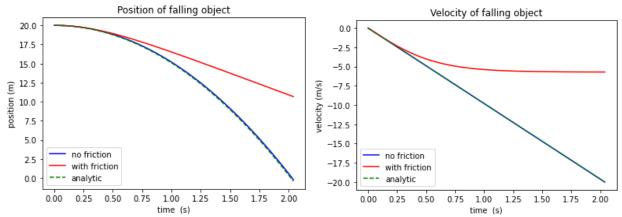
If we do this in an iterative scheme, we get values for position and velocity on discrete times, (0,dt,2dt, 3dt, ...)

We will write a program in which a particle of density $1.0 \ 10^3 \ \text{kg/m^3}$ and diameter of 3mm will fall from a height H =20 straight down. The particle has zero initial velocity. N2 for this case reads as

$$m\frac{dv}{dt} = -mg - A_{\perp}C_D \frac{1}{2}\rho_{air}v^2$$

We compute velocity and position with drag on the particle and without. Besides, we use the analytical solution to see how good our numerical one is in case of no-friction.

The results are given below. Note that the analytic solution and the computed one for the frictionless case are almost on top of each other.



A Python code is given on the next page.

dropping a stone to find gravity's acceleration, taking air friction into account

import numpy as np import matplotlib.pyplot as plt

pi=np.pi	#set pi=3.1415	[-]
$rho_p = 1e3$	#density of particle	[kg/m3]
rho_air=1.2	#density of air	[kg/m3]
D=3.0e-3	#diameter of (spherical) particle	[m]
Aperp = pi*D*D/4.0	#frontal area of a sphere	[m2]
CD = 1	#drag coefficient	[-]
m=pi/6.0*rho_p*D*D*D	#mass of particle	[kg]
grav=9.81	#gravity's acceleration	[m/s2]
H=20.0	#initial height at t=0	[0]
dt=0.02	#time step	[s]
N=100	#number of iterations	
v=[]	#particle velocity	
x=[]	#particle position	
t=[]	#time	
y=[]	#frictionless particle position	
w=[]	#frictionless particle velocity	
Z=[]	#analytic solution (frictionless)	
u=[]	#analytic solution (frictionless)	
t.append(0.0)		
x.append(0.0)		
v.append(0.0)		
y.append(0.0)		
w.append(0.0)		

#compute drag force per unit mass and add gravity per unit mass
def f(v):
 f=-grav - CD*Aperp*0.5*rho_air*v*v*np.sign(v)/m
 return f

.....

```
#start iterations
for i in range (1,N):
    x.append(x[i-1] + dt*v[i-1])
    v.append(v[i-1] + dt*f(v[i-1]))
    t.append(t[i-1] + dt)
    y.append(y[i-1] + dt*w[i-1])
    w.append(-grav*t[i])
    if y[i]<0:
        break  #stop iterating if free falling particle has reached the ground
    print("i= ",i," x=", x[i]," y=",y[i]," v= ",v[i]," w= ",w[i])</pre>
```

```
#plot velocity
plt.plot(t,w,'b-',t,v,'r-',t,u,'g--')
# Add title and axis names
plt.title('Velocity of falling object')
plt.xlabel('time (s)')
plt.ylabel('velocity (m/s)')
plt.legend(["no friction", "with friction", "analytic"], loc ="lower left")
plt.show()
```

```
#plot position
```

plt.plot(t,y,'b-',t,x,'r-')
Add title and axis names
plt.title('Position of falling object')
plt.xlabel('time (s)')
plt.ylabel('position (m)')
plt.legend(["no friction", "with friction", "analytic"], loc ="lower left")
plt.show()

v_inf=v[N-1] print("v_inf = ",v_inf)