
Falling particle

We use a simple numerical scheme to compute the velocity and position of the particle. It is not
the best numerical scheme, but if suffices for our purpose. We try to find a new value for the
velocity and for the position by letting the time advance by a small value of dt.
The basic idea is that we solve a first order differential equation by reworking its mathematical
definition to ‘taking the limit of dt almost to zero’.
Suppose we have a differential equation of the form

𝑑x
𝑑𝑡 = 𝑓 ⇒

𝑥(t + dt) − x(t)
dt ≈ 𝑓(𝑡) ⇒ 𝑥(𝑡 + 𝑑𝑡) ≈ 𝑥(𝑡) + 𝑓(𝑡) ∗ 𝑑𝑡

In computer coding it is easier to number the elements of x and use as notation x[i]. This means
the value of x corresponding to time t[i]. The latter is t[i] = t[i-1]+dt = i*dt

We apply the above to N2 by writing it as:

𝑑𝑣
𝑑𝑡 = 𝐹/𝑚	 ⇒ 𝑣[𝑖] = 𝑣[𝑖 − 1] +

𝐹[𝑖-1]
𝑚 𝑑𝑡

The smaller the value of dt, the more accurate our calculation.
From the definition of the velocity, we can find the position:

v =
𝑑x
𝑑𝑡 	⇒ x[𝑖] = x[𝑖 − 1] + v[i-1]𝑑𝑡

If we do this in an iterative scheme, we get values for position and velocity on discrete times,
(0,dt,2dt, 3dt, …)

We will write a program in which a particle of density 1.0 103 kg/m3 and diameter of 3mm will
fall from a height H =20 straight down. The particle has zero initial velocity.
N2 for this case reads as

𝑚
𝑑𝑣
𝑑𝑡

= −𝑚𝑔 − 𝐴!𝐶"
1
2
𝜌#$%𝑣&

We compute velocity and position with drag on the particle and without. Besides, we use the
analytical solution to see how good our numerical one is in case of no-friction.
The results are given below. Note that the analytic solution and the computed one for the
frictionless case are almost on top of each other.

A Python code is given on the next page.

"""
dropping a stone to find gravity's acceleration, taking air friction into account
"""

import numpy as np
import matplotlib.pyplot as plt

pi=np.pi #set pi=3.1415... [-]
rho_p = 1e3 #density of particle [kg/m3]
rho_air=1.2 #density of air [kg/m3]
D=3.0e-3 #diameter of (spherical) particle [m]
Aperp = pi*D*D/4.0 #frontal area of a sphere [m2]
CD = 1 #drag coefficient [-]
m=pi/6.0*rho_p*D*D*D #mass of particle [kg]
grav=9.81 #gravity's acceleration [m/s2]
H=20.0 #initial height at t=0 [0]

dt=0.02 #time step [s]
N=100 #number of iterations
v=[] #particle velocity
x=[] #particle position
t=[] #time
y=[] #frictionless particle position
w=[] #frictionless particle velocity
z=[] #analytic solution (frictionless)
u=[] #analytic solution (frictionless)
t.append(0.0)
x.append(0.0)
v.append(0.0)
y.append(0.0)
w.append(0.0)

#compute drag force per unit mass and add gravity per unit mass
def f(v):
 f=-grav - CD*Aperp*0.5*rho_air*v*v*np.sign(v)/m
 return f

#start iterations
for i in range (1,N):

x.append(x[i-1] + dt*v[i-1])
 v.append(v[i-1] + dt*f(v[i-1]))
 t.append(t[i-1] + dt)
 y.append(y[i-1] + dt*w[i-1])
 w.append(-grav*t[i])

if y[i]<0:
 break #stop iterating if free falling particle has reached the ground
 print("i= ",i,” x=”, x[i],” y=”,y[i]," v= ",v[i]," w= ",w[i])

#plot velocity
plt.plot(t,w,'b-',t,v,'r-',t,u,’g—')
Add title and axis names
plt.title('Velocity of falling object')
plt.xlabel('time (s)')
plt.ylabel('velocity (m/s)')
plt.legend(["no friction", "with friction”,”analytic”], loc ="lower left")
plt.show()

#plot position
plt.plot(t,y,'b-',t,x,'r-')
Add title and axis names
plt.title('Position of falling object')
plt.xlabel('time (s)')
plt.ylabel('position (m)')
plt.legend(["no friction", "with friction”,”analytic”], loc ="lower left")
plt.show()

v_inf=v[N-1]
print("v_inf = ",v_inf)

