Falling particle

We use a simple numerical scheme to compute the velocity and position of the particle. It is not
the best numerical scheme, but if suffices for our purpose. We try to find a new value for the
velocity and for the position by letting the time advance by a small value of dt.

The basic idea is that we solve a first order differential equation by reworking its mathematical
definition to ‘taking the limit of dt almost to zero’.

Suppose we have a differential equation of the form
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In computer coding it is easier to number the elements of x and use as notation x[i]. This means
the value of x corresponding to time t[i]. The latter is t[i] = t[i-1]+dt = i*dt

We apply the above to N2 by writing it as:

dv _ ) F[i-1]
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The smaller the value of dt, the more accurate our calculation.

From the definition of the velocity, we can find the position:

V= % = x[i] = x[i — 1] + v[i-1]dt

If we do this in an iterative scheme, we get values for position and velocity on discrete times,
(0,dt,2dt, 3dt, ...)

We will write a program in which a particle of density 1.0 10° kg/m? and diameter of 3mm will
fall from a height H =20 straight down. The particle has zero initial velocity.
N2 for this case reads as
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We compute velocity and position with drag on the particle and without. Besides, we use the
analytical solution to see how good our numerical one is in case of no-friction.

The results are given below. Note that the analytic solution and the computed one for the
frictionless case are almost on top of each other.
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A Python code is given on the next page.



nan

dropping a stone to find gravity's acceleration, taking air friction into account

nan

import numpy as np
import matplotlib.pyplot as plt

pi=np.pi #set pi=3.1415...

rho p=1e3 #density of particle

rho _air=1.2 #density of air

D=3.0e-3 #diameter of (spherical) particle
Aperp = pi*D*D/4.0 #frontal area of a sphere
Ch=1 #drag coefficient
m=pi/6.0*rho_p*D*D*D #mass of particle

grav=9.81 #gravity's acceleration

H=20.0 #initial height at t=0

dt=0.02 #time step

N=100 #number of iterations

v=[] #particle velocity

x=[] #particle position

t=[] #time

y=[] #frictionless particle position
w=[] #frictionless particle velocity
z=[] #analytic solution (frictionless)
u=[] #analytic solution (frictionless)
t.append(0.0)

x.append(0.0)

v.append(0.0)

y.append(0.0)

w.append(0.0)

#compute drag force per unit mass and add gravity per unit mass
def f(v):

f=-grav - CD*Aperp*0.5*rho_air*v*v*np.sign(v)/m

return f
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#start iterations
foriin range (1,N):
x.append(x[i-1] + dt*v[i-1])
v.append(v[i-1] + dt*f(v[i-1]))
t.append(t[i-1] + dt)
y.append(y[i-1] + dt*w][i-1])
w.append(-grav*t[i])
it y[1]<O0:
break #stop iterating if free falling particle has reached the ground
print("i=",1,” x=", x[i],” y="y[i]," v=",v[i]," w=",w[i])

#plot velocity
plt.plot(t,w,'b-"t,v,r-",t,u,’g—")

# Add title and axis names
plt.title('Velocity of falling object’)
plt.xlabel('time (s)")
plt.ylabel('velocity (m/s)")

plt.legend(["no friction", "with friction”, analytic™’], loc ="lower left")
plt.show()

#plot position
plt.plot(t,y,'b-',t,x,'r-")

# Add title and axis names
plt.title("Position of falling object')
plt.xlabel('time (s)")
plt.ylabel('position (m)")

plt.legend(["no friction", "with friction”, analytic™’], loc ="lower left")
plt.show()

v_inf=v[N-1]
print("v_inf=",v_inf)



