Falling particle

We use a simple numerical scheme to compute the velocity and position of the particle. It is not
the best numerical scheme, but if suffices for our purpose. We try to find a new value for the
velocity and for the position by letting the time advance by a small value of dt.

The basic idea is that we solve a first order differential equation by reworking its mathematical
definition to ‘taking the limit of dt almost to zero’.

Suppose we have a differential equation of the form

% PG dz TXO L) o x(t + de) ~ x(6) + F(E) * dt

In computer coding it is easier to number the elements of x and use as notation x[i]. This means
the value of x corresponding to time t[i]. The latter is t[i] = t[i-1]+dt = i*dt

We apply the above to N2 by writing it as:

dv _) F[i-1]
—=F/m = vl[i] = v[i — 1] +Tdt
The smaller the value of dt, the more accurate our calculation.

From the definition of the velocity, we can find the position:

V= % = x[i] = x[i — 1] + v[i-1]dt

If we do this in an iterative scheme, we get values for position and velocity on discrete times,
(0,dt,2dt, 3dt, ...)

We will write a program in which a particle of density 1.0 10° kg/m? and diameter of 3mm will
fall from a height H =20 straight down. The particle has zero initial velocity.
N2 for this case reads as

dv)
ma =-mg—A,(p Epairv

We compute velocity and position with drag on the particle and without. Besides, we use the
analytical solution to see how good our numerical one is in case of no-friction.

The results are given below. Note that the analytic solution and the computed one for the
frictionless case are almost on top of each other.

Position of falling object Velocity of falling object
20.0 A 0.0
175 -25
15.0 -5.0
=125 | @ 75
£ E
§ 10.0 1 2 -10.0 -
2 s 8
g 75 T -12.5
>
5.0 4 -15.0
25 4 = no friction = no friction
—— with friction ~17.5 1 — yith friction
0.0 1 === analytic 2004 """ analytic
000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200
time (s) time (s)

A Python code is given on the next page.

nan

dropping a stone to find gravity's acceleration, taking air friction into account

nan

import numpy as np
import matplotlib.pyplot as plt

pi=np.pi #set pi=3.1415...

rho p=1e3 #density of particle

rho _air=1.2 #density of air

D=3.0e-3 #diameter of (spherical) particle
Aperp = pi*D*D/4.0 #frontal area of a sphere
Ch=1 #drag coefficient
m=pi/6.0*rho_p*D*D*D #mass of particle

grav=9.81 #gravity's acceleration

H=20.0 #initial height at t=0

dt=0.02 #time step

N=100 #number of iterations

v=[] #particle velocity

x=[] #particle position

t=[] #time

y=[] #frictionless particle position
w=[] #frictionless particle velocity
z=[] #analytic solution (frictionless)
u=[] #analytic solution (frictionless)
t.append(0.0)

x.append(0.0)

v.append(0.0)

y.append(0.0)

w.append(0.0)

#compute drag force per unit mass and add gravity per unit mass
def f(v):

f=-grav - CD*Aperp*0.5*rho_air*v*v*np.sign(v)/m

return f

[kg/m3]
[kg/m3]

[m2]
[-]
[ke]
[m/s2]
[0]

[s]

#start iterations
foriin range (1,N):
x.append(x[i-1] + dt*v[i-1])
v.append(v[i-1] + dt*f(v[i-1]))
t.append(t[i-1] + dt)
y.append(y[i-1] + dt*w][i-1])
w.append(-grav*t[i])
it y[1]<O0:
break #stop iterating if free falling particle has reached the ground
print("i=",1,” x=", x[i],” y="y[i]," v=",v[i]," w=",w[i])

#plot velocity
plt.plot(t,w,'b-"t,v,r-",t,u,’g—")

Add title and axis names
plt.title('Velocity of falling object’)
plt.xlabel('time (s)")
plt.ylabel('velocity (m/s)")

plt.legend(["no friction", "with friction”, analytic™’], loc ="lower left")
plt.show()

#plot position
plt.plot(t,y,'b-',t,x,'r-")

Add title and axis names
plt.title("Position of falling object')
plt.xlabel('time (s)")
plt.ylabel('position (m)")

plt.legend(["no friction", "with friction”, analytic™’], loc ="lower left")
plt.show()

v_inf=v[N-1]
print("v_inf=",v_inf)

