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Preface
This book provides an introduction for freshman students into the
world of classical mechanics and special relativity theory. Much
of physics is build on the basic ideas from classical mechanics.
Hence an early introduction to the topic can be beneficial for new
students. However, at the start of studying physics, lots of the
required math is not available yet. That means that all kind of
concepts that are very useful can not be invoked in the lectures and
teaching. That does not have to be a disadvantage. It can also be
used to help the students by introducing some math and coupling it
directly to the physics, making more clear why mathematics should
be studied and what its 'practical use' is. With this book, we aim
to introduce new students directly at the start of their studies into
the world of physics, more specifically the world of Newton, Galilei
and many others who laid the foundation of physics. We aim to
help students getting a good understanding of the theory, i.e. the
framework of physics. What is 'work' and why do we use it? Why
is kinetic energy 1/2mv² and not 1/3mv² or 1/2mv³? Both 3's are

fundamentally wrong, but what is behind it?
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1. Introduction
Updated: October 11, 2025 This book provides an introduction for freshman students into
the world of classical mechanics and special relativity theory. Much of physics is build on
the basic ideas from classical mechanics. Hence an early introduction to the topic can be
beneficial for new students. However, at the start of studying physics, lots of the required
math is not available yet. That means that all kind of concepts that are very useful can not
be invoked in the lectures and teaching. That does not have to be a disadvantage. It can
also be used to help the students by introducing some math and coupling it directly to the
physics, making more clear why mathematics should be studied and what its ‘practical
use’ is. With this book, we aim to introduce new students directly at the start of their
studies into the world of physics, more specifically the world of Newton, Galilei and
many others who laid the foundation of physics. We aim to help students getting a good
understanding of the theory, i.e. the framework of physics. What is ‘work’ and why do we
use it? Why is kinetic energy 12𝑚𝑣2 and not 13𝑚𝑣2 or 12𝑚𝑣3? Both 3′s are fundamentally
wrong, but what is behind it?

1.1 About this book
Classical mechanics is the starting point of physics. Over the centuries, via Newton’s
three fundamental laws formulated around 1687, we have built a solid framework
describing the material world around us. On these pages, you will find a textbook with
animations, demos, interactive elements and exercises for studying introductory classical
mechanics. Moreover, we will consider the first steps of Einstein’s Special Theory of
Relativity published 1905.

This material is made to support first year students from the BSc Applied Physics at Delft
University of Technology during their course Classical Mechanics and Relativity Theory,
MechaRela for short. But, of course, anybody interested in Classical Mechanics and
Special Relativity is more than welcome to use this book.

With this e-book our aim is to provide learning material that is:

• self-contained
• easy to modify and thus improve over the years
• interactive by providing demos, interactive elements and exercises next to the

lectures

This book is based on Mudde & Rieger 2025.

That book was already beyond introductory level and presumed a solid basis in both
calculus and basic mechanics. All texts in this book were revised, additional examples and
exercises were included, picture and drawings have been updated and interactive
materials have been included. Hence, this book should be considered a stand-alone new
version. Note that we made good use of other open educational resources, several
exercises stem from such resources. Where we use external materials, we acknowledge
and credit the original sources.

1.1.1 Special features
In this book you will find some ‘special’ features. Some of these are indicated by their
own formatting:

Intermezzos
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Exercise 1.1: 🌶

Each chapter includes a variety of exercises tailored to the material. We distinguish
between exercises embedded within the instructional text and those presented on
separate pages. The in-text exercises should be completed while reading, as they offer
immediate feedback on whether the concepts and mathematics are understood. The
separate exercise sets are intended for practice after reading the text and attending the
lectures.

To indicate the level of difficulty, each exercise is marked with 1, 2, or 3 🌶

Intermezzos contain background information on the topic or on the people that
worked on relevant concepts.

Experiments

We include some basic experiments that can be done at home.

Example: Examples

We provide various examples showcasing, e.g., calculations.

Python

We include in-browser python code, as well as downloadable .py files which can be
executed locally. If there is an in-browser, press the ON-button to ‘enable compute’.
Try it by pushing the ON-button and subsequently the play button and see the output
in de code-cell below.

print("The square root of 2 is: ", 2 ** 0.5)

The interactive elements, such as Python code - hover over functionality etc, only work in
the online environment, not in the pdf. Where possible we included qr codes and links to
the online clips. New concepts, such as Free body diagram, are introduced with a hover-
over. If you move your mouse over the italicized part of the text, you will get a short
explanation.

The book can be read online. There is, however, the opportunity to download the
materials as Jupyter Notebook file and play with the code offline as well. We advise you to
use Jupyter Lab in combination with MyST.

1.1.2 Feedback
This is the first version of this book. Although many have work on it and several
iterations have been made, there might still be issues. Do you see a mistake? Do you have
suggestions for exercises? Are parts missing or abundant? Tell us! You can use the
Feedback button in the top right of the screen. You will need a (free) GitHub account to
report an issue!

1.2 Authors
Robert Mudde is Distinguished Professor of Science Education at the faculty of Applied
Sciences of Delft University of Technology in The Netherlands.
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Bernd Rieger is Antoni van Leeuwenhoek Professor in the Department of Imaging
Physics at the faculty of Applied Sciences of Delft University of Technology in The
Netherlands.

Freek Pols is an assistant professor in the Science & Engineering Education group at the
faculty of Applied Sciences of Delft University of Technology in The Netherlands.

Special thanks to Hanna den Hertog for (re)making most of the drawings, Luuk Fröling
for his technical support and Dion Hoeksema for converting the .js scripts to .py files.
Also thanks to Vebe Helmes, Alexander Lopes-Cardozo, Sep Schouwenaar, Winston de
Greef and Boas Bakker for their comments and suggestions.
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1.3 Open Educational Resource
This book is licensed under a Creative Commons Attribution 4.0 International License
unless stated otherwise. It is part of the collection of Interactive Open Textbooks of TU
Delft Open.

This website is a Jupyter Book. Source files are available for download using the button
on the top right.

1.3.1 Software and license
This website is a Jupyter Book. Markdown source files are available for download using
the button on the top right, licensed under CC-BY-NC (unless stated otherwise). All
python codes / apps are freely reusable, adaptable and redistributable (CC0).

1.3.2 Images, videos, apps, intermezzos
The cover image is inspired by the work of 3Blue1Brown developer Grant Sanderson.

All vector images have been made by Hanna den Hertog, and are available in vector
format through the repository. For reuse, adapting and redistribution, adhere to the CC-
BY licences.

We embedded several clips from 3Blue1Brown in accord with their licences requirements.

The embedded vpython apps are made freely available from trinket.

Some videos from NASA are included, where we adhere to their regulations.

At various places we use pictures which are in the public domain. We comply to the
regulations with regard to references.

The Intermezzos, which elaborate on the lives of various scientists and the efforts behind
key physical discoveries, are composed by drawing from a range of different sources.
Rather than directly reproducing any one account, these stories have been reworked into
a narrative that fits the context and audience of this book.

1.3.3 How to cite this book
R.F. Mudde, B. Rieger, C.F.J. Pols, Classical Mechanics & Special Relativity for Beginners, CC
BY-NC

@book{MuddeRiegerPols2025,
  author    = {Robert F. Mudde and Bernd Rieger and Freek Pols},
  title     = {Classical Mechanics \& Special Relativity for Beginners},
  year      = {2025},
  publisher = {TU Delft Open},
  note      = {CC BY-NC},
  url       = {https://interactivetextbooks.tudelft.nl/mecharela}
}
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2. Mechanics
Updated: October 11, 2025 In this part we cover the fundamentals of Classical Mechanics.
We discuss the three laws of Newton and their first consequences. This part focusses on
the primary concepts and quantities: Force, Work, Energy, Angular Momentum. We derive
and discuss the conservation equations of these and their applications. Two topics receive
special attention: Oscillations and Collisions. We restrict the discussion to one-dimensional
cases as much as possible to help understand the physics and not get lost in multi-
dimensional problems at an early stage. However, more-dimensionality is not avoided as,
for instance, it should be clear from the start that physics not only deals with numbers
(better: scalars) but equally important, if not more important, with vectors. Moreover,
angular momentum and torque by their very nature require multi-dimensional thinking.

There are also subjects that we don’t touch upon. We will not deal with rigid bodies
(although some of the ideas are met when talking about kinetic energy: its translational
versus rotational flavors). Rigid bodies require a higher level of abstract thinking and will
take up quite some time that is not available in most introductory courses on Classical
Mechanics. Nor will we discuss non-inertial frames of reference and fictitious forces like
the centrifugal and Coriolis Force. This is left for later years. Finally, the concepts of the
Lagrangian and Hamiltonian are left for an advanced course in Classical Mechanics.
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2.1 The language of Physics
Updated: October 11, 2025 Physics is the science that seeks to understand the
fundamental workings of the universe: from the motion of everyday objects to the
structure of atoms and galaxies. To do this, physicists have developed a precise and
powerful language: one that combines mathematics, both colloquial and technical
language, and visual representations. This language allows us not only to describe how
the physical world behaves, but also to predict how it will behave under new conditions.

In this chapter, we introduce the foundational elements of this language, covering how to
express physical ideas using equations, graphs, diagrams, and words. You’ll also get a first
taste of how physics uses numerical simulations as an essential complement to analytical
problem solving.

This language is more than just a set of tools—it is how physicists think. Mastering it is
the first step in becoming fluent in physics.

2.1.1 Representations
Physics problems and concepts can be represented in multiple ways, each offering a
different perspective and set of insights. The ability to translate between these
representations is one of the most important skills you will develop as a physics student.
In this section, we examine three key forms of representation: equations, graphs and
drawings, and verbal descriptions using the context of a base jumper, see Figure 1.

Figure 2.1:  A base jumper is used as context to get familiar with representation, picture
from https://commons.wikimedia.org/wiki/File:04SHANG4963.jpg

2.1.1.1 Verbal descriptions
Words are indispensable in physics. Language is used to describe a phenomenon, explain
concepts, pose problems and interpret results. A good verbal description makes clear:

• What is happening in a physical scenario;
• What assumptions are being made (e.g., frictionless surface, constant mass);
• What is known and what needs to be found.
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Example: Base jumper: Verbal description

Let us consider a base jumper jumping from a 300 m high building. We take that the
jumper drops from that height with zero initial velocity. We will assume that the stunt
is performed safely and in compliance with all regulations/laws. Finally, we will
assume that the problem is 1-dimensional: the jumper drops vertically down and
experiences only gravity, buoyancy and air-friction.

We know (probably from experience) that the jumper will accelerate. Picking up speed
increases the drag force acting on the jumper, slowing the acceleration (meaning it still
accelerates!). The speed keeps increasing until the jumper reaches its terminal
velocity, that is the velocity at which the drag (+ buoyancy) exactly balance gravity
and the sum of forces on the jumper is zero. The jumper no longer accelerates.

Can we find out what the terminal velocity of this jumper will be and how long it
takes to reach that velocity?

2.1.1.2 Visual representations
Visual representations help us interpret physical behavior at a glance. Graphs, motion
diagrams, free-body diagrams, and vector sketches are all ways to make abstract ideas
more concrete.

• Graphs (e.g., position vs. time, velocity vs. time) reveal trends and allow for
estimation of slopes and areas, which have physical meanings like velocity and
displacement.

• Drawings help illustrate the situation: what objects are involved, how they are
moving, and what forces act on them.

Example: Base jumper: Free body diagram

The situation of the base jumper is sketched in Figure 2 using a Free body diagram.
Note that all details of the jumper are ignored in the sketch.

Figure 2.2:  Force acting on the jumper.

• 𝑚 = mass of jumper (in kg);
• 𝑣 = velocity of jumper (in m/s);
• 𝐹𝑔 = gravitational force (in N);
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• 𝐹𝑓  = drag force by the air (in N);
• 𝐹𝑏 = buoyancy (in N): like in water also in air there is an upward force, equal to

the weight of the displaced air.

2.1.1.3 Equations
Equations are the compact, symbolic expressions of physical relationships. They tell us
how quantities like velocity, acceleration, force, and energy are connected.

Example: Base jumper: equations

The forces acting on the jumper are already shown in Figure 2. Balancing of forces
tells us that the jumper might reach a velocity such that the drag force and buoyancy
exactly balance gravity and the jumper no longer accelerates:

𝐹𝑔 = 𝐹𝑓 + 𝐹𝑏 (2.1)

We can specify each of the force:

𝐹𝑔 = −𝑚𝑔 = −𝜌𝑝𝑉𝑝𝑔

𝐹𝑓 = 1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑣2

𝐹𝑏 = 𝜌𝑎𝑖𝑟𝑉𝑝𝑔

(2.2)

with 𝑔 the acceleration of gravity, 𝜌𝑝 the density of the jumper (≈ 103 kg/m3), 𝑉𝑝 the
volume of the jumper, 𝜌𝑎𝑖𝑟 the density of air (≈ 1.2 kg/m3), 𝐶𝐷 the so-called drag
coefficient, 𝐴 the frontal area of the jumper as seen by the air flowing past the jumper.

A physicist is able to switch between these representations, carefully considering which
representations suits best for the given situation. We will practice these when solving
problems.

Danger

Note that in the example above we neglected directions. In our equation we should
have been using vector notation, which we will cover in one of the next sections in
this chapter.
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2.1.2 How to solve a physics problem?
One of the most common mistakes made by ‘novices’ when studying problems in physics
is trying to jump as quickly as possible to the solution of a given problem or exercise by
picking an equation and slotting in the numbers. For simple questions, this may work.
But when stuff gets more complicated, it is almost a certain route to frustration.

There is, however, a structured way of problem solving, that is used by virtually all
scientists and engineers. Later this will be second nature to you, and you will apply this
way of working automatically. It is called IDEA, an acronym that stands for:

Figure 2.3:  IDEA

• Interpret - First think about the problem. What does it mean? Usually, making a
sketch helps. Actually: always start with a sketch;

• Develop - Build a model, from coarse to fine, that is, first think in the governing
phenomena and then subsequently put in more details. Work towards writing down
the equation of motion and boundary conditions;

• Evaluate - Solve your model, i.e. the equation of motion;
• Assess - Check whether your answer makes any sense (e.g. units OK? What order of

magnitude did we expect?).

We will practice this and we will see that it actually is a very relaxed way of working and
thinking. We strongly recommend to apply this strategy for your homework and exams
(even though it seems strange in the beginning).

The first two steps (Interpret and Develop) typically take up most of the time spend on a
problem.
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2.1.2.1 Example

Interpret

Three forces act on the jumper, shown in the figure below. Finding the terminal
velocity implies that all forces are balanced (∑ 𝐹 = 0).

The buoyancy force is much smaller than the force of gravity (about 0.1%) and we
neglect it.

Develop

We know all forces: gravitational force equals the drag force

𝐹𝑔 = 𝐹𝑓

𝑚𝑔 = 1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑣2

(2.3)

Evaluate

Assume a mass of 75 kg, an acceleration due to gravity of 9.81 m/s2, and air density
of 1.2 kg/m3, a drag coefficient of 1, a frontal surface area of 0.7 m2.

𝑚𝑔 = 1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑣2 (2.4)

Rewriting:

𝑣 = √ 2𝑚𝑔
𝜌𝑎𝑖𝑟𝐶𝐷𝐴

𝑣 = √ 2 ⋅ 75 (kg) ⋅ 9.81 (m/s2)
1.2 (kg/m3) ⋅ 1 ⋅ 0.7 (m2)

𝑣 = 40 m/s

(2.5)

Assess
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We may know that raindrops typically reach a terminal velocity of less than 10 m/s.
A terminal velocity of 40 m/s seems therefore plausible.

Note that we didn’t solve the problem entirely! We only calculated the terminal
velocity, where the question was how long it would roughly take to reach such a
velocity.

Good Practice

It is a good habit to make your mathematical steps small: one-by-one. Don’t make big
jumps or multiple steps in one step. If you make a mistake, it will be very hard to trace
it back.

Next: check constantly the dimensional correctness of your equations: that is easy to
do and you will find the majorities of your mistakes.

Finally, use letters to denote quantities, including 𝜋. The reason for this is:

• letters have meaning and you can easily put dimensions to them;
• letters are more compact;
• your expressions usually become easier to read and characteristic features of the

problem at hand can be recognized.

Powers of ten

In physics, powers of ten are used to express very large or very small quantities
compactly and clearly, from the size of atoms (≈ 10−10 m) to the distance between
stars (≈ 1016 m). This notation helps compare scales, estimate orders of magnitude,
and maintain clarity in calculations involving extreme values.

We use prefixes to denote these powers of ten in front of the standard units, e.g. km
for 1000 meters, ms for milliseconds, GB for gigabyte that is 1 billionbytes. Here is
a list of prefixes.

Prefix Symbol Math Prefix Symbol Math
Yocto y 10−24 Base • 10⁰
Zepto z 10−21 Deca da 10¹
Atto a 10−18 Hecto h 10²
Femto f 10−15 Kilo k 10³
Pico p 10−12 Mega M 10⁶
Nano n 10−9 Giga G 10⁹
Micro µ 10−6 Tera T 10¹²
Milli m 10−3 Peta P 10¹⁵
Centi c 10−2 Exa E 10¹⁸
Deci d 10−1 Zetta Z 10²¹
Base • 10⁰ Yotta Y 10²⁴

On quantities and units
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Each quantity has a unit. As there are only so many letters in the alphabet (even when
including the Greek alphabet), letters are used for multiple quantities. How can we
distinguish then meters from mass, both denoted with the letter m? Quantities are
expressed in italics (𝑚) and units are not (m).

We make extensively use of the International System of Units (SI) to ensure
consistency and precision in measurements across all scientific disciplines. The seven
base SI units are:

Unit Symbol Quantity
meter m length
kilogram kg mass
second s time
ampere A electric current
kelvin K temperature
mole mol amount of substance
candela cd luminous intensity

All other quantities can be derived from these using dimension analysis:

𝑊 = 𝐹 ⋅ 𝑠 = 𝑚𝑎 ⋅ 𝑠 = 𝑚Δ𝑣
Δ𝑡

⋅ 𝑠

= [N] ⋅ [m] = [kg] ⋅ [m/s2] ⋅ [m] = [kg] ⋅ [m/s]
[s]

⋅ [m] = [kgm2

s2 ]
(2.6)

Note: Newton is the person, fully written the unit N is newton, without capitalization
of the first letter.

Tip

For a more elaborate description of quantities, units and dimension analysis, see the
manual of the first year physics lab course.
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2.1.3 Calculus
Most of the undergraduate theory in physics is presented in the language of Calculus. We
do a lot of differentiating and integrating, and for good reasons. The basic concepts and
laws of physics can be cast in mathematical expressions, providing us the rigor and
precision that is needed in our field. Moreover, once we have solved a certain problem
using calculus, we obtain a very rich solution, usually in terms of functions. We can
quickly recognize and classify the core features, that help us understanding the problem
and its solution much deeper.

Given the example of the base jumper, we would like to know how the jumper’s position
as a function of time. We can answer this question by applying Newton’s second law
(though it is covered in secondary school, the next chapter explains in detail Newton’s
laws of motion):

∑ 𝐹 = 𝐹𝑔 − 𝐹𝑓 = 𝑚𝑎 = 𝑚𝑑𝑣
𝑑𝑡

(2.7)

𝑚𝑑𝑣
𝑑𝑡

= 𝑚𝑔 − 1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑣2 (2.8)

Clearly this is some kind of differential equation: the change in velocity depends on the
velocity itself. Before we even try to solve this problem (𝑣(𝑡) = …), we have to dig deeper
in the precise notation, otherwise we will get lost in directions and sign conventions.

2.1.3.1 Differentiation
Many physical phenomena are described by differential equations. That may be because a
system evolves in time or because it changes from location to location. In our treatment
of the principles of classical mechanics, we will use differentiation with respect to time a
lot. The reason is obviously found in Newton’s 2𝑛𝑑 law: 𝐹 = 𝑚𝑎.

The acceleration 𝑎 is the derivative of the velocity with respect to time; velocity in itself is
the derivative of position with respect to time. Or when we use the equivalent
formulation with momentum: 𝑑𝑝

𝑑𝑡 = 𝐹 . So, the change of momentum in time is due to
forces. Again, we use differentiation, but now of momentum.

There are three common ways to denote differentiation. The first one is by ‘spelling it
out’:

𝑣 = 𝑑𝑥
𝑑𝑡

and 𝑎 = 𝑑𝑣
𝑑𝑡

= 𝑑2𝑥
𝑑𝑡2

(2.9)

• Advantage: it is crystal clear what we are doing.
• Disadvantage: it is a rather lengthy way of writing.

Newton introduced a different flavor: he used a dot above the quantity to indicate
differentiation with respect to time. So,

𝑣 = ̇𝑥, or 𝑎 = ̇𝑣 = ̈𝑥 (2.10)

• Advantage: compact notation, keeping equations compact.
• Disadvantage: a dot is easily overlooked or disappears in the writing.

Finally, in math often the prime is used: 𝑑𝑓
𝑑𝑥 = 𝑓′(𝑥) or 𝑑2𝑓

𝑑𝑥2 = 𝑓′′(𝑥). Similar advantage
and disadvantage as with the dot notation.
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Important

𝑣 = 𝑑𝑥
𝑑𝑡

= ̇𝑥 = 𝑥′ (2.11)

𝑎 = 𝑑𝑣
𝑑𝑡

= ̇𝑣 = 𝑑2𝑥
𝑑𝑡2

= ̈𝑥 (2.12)

It is just a matter of notation.

2.1.4 Definition of velocity, acceleration and momentum
In mechanics, we deal with forces on particles. We try to describe what happens to the
particles, that is, we are interested in the position of the particles, their velocity and
acceleration. We need a formal definition, to make sure that we all know what we are
talking about.

1-dimensional case

In one dimensional problems, we only have one coordinate to take into account to
describe the position of the particle. Let’s call that 𝑥. In general, 𝑥 will change with time
as particles can move. Thus, we write 𝑥(𝑡) showing that the position, in principle, is a
function of time 𝑡. How fast a particle changes its position is, of course, given by its
velocity. This quantity describes how far an object has traveled in a given time interval:
𝑣 = Δ𝑥

Δ𝑡 . However, this definition gives actually the average velocity in the time interval
Δ𝑡. The (momentary) velocity is defined as:

Definition Velocity

𝑣 ≡ lim
Δ𝑡→0

𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡)
(𝑡 + Δ𝑡) − 𝑡

= 𝑑𝑥
𝑑𝑡

(2.13)

Similarly, we define the acceleration as the change of the velocity over a time interval Δ𝑡:
𝑎 = Δ𝑣

Δ𝑡 . Again, this is actually the average acceleration and we need the momentary one:

Definition Acceleration

𝑎 ≡ lim
Δ𝑡→0

𝑣(𝑡 + Δ𝑡) − 𝑣(𝑡)
(𝑡 + Δ𝑡) − 𝑡

= 𝑑𝑣
𝑑𝑡

(2.14)

Consequently,

𝑎 = 𝑑𝑣
𝑑𝑡

= 𝑑
𝑑𝑡

(𝑑𝑥
𝑑𝑡

) = 𝑑2𝑥
𝑑𝑡2

(2.15)
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Now that we have a formal definition of velocity, we can also define momentum:
momentum is mass times velocity, in math:

Definition Momentum

𝑝 ≡ 𝑚𝑣 = 𝑚𝑑𝑥
𝑑𝑡

(2.16)

In the above, we have not worried about how we measure position or time. The latter is
straight forward: we use a clock to account for the time intervals. To find the position, we
need a ruler and a starting point from where we measure the position. This is a
complicated way of saying the we need a coordinate system with an origin. But once we
have chosen one, we can measure positions and using a clock measure changes with time.

Figure 2.5:  Calculating velocity requires both position and time, both easily measured e.g.
using a stopmotion where one determines the position of the car per frame given a

constant time interval.

2.1.4.1 Vectors - more dimensional case
Position, velocity, momentum, force: they are all vectors. In physics we will use vectors a
lot. It is important to use a proper notation to indicate that you are working with a vector.
That can be done in various ways, all of which you will probably use at some point in
time. We will use the position of a particle located at point P as an example.

Tip

See the linear algebra book on vectors.

Position vector

We write the position vector of the particle as ⃗𝑟. This vector is a ‘thing’, it exists in space
independent of the coordinate system we use. All we need is an origin that defines the
starting point of the vector and the point P, where the vector ends.

16

https://interactivetextbooks.tudelft.nl/linear-algebra/Chapter1/Vectors.html


Figure 2.6:  Some physical quantities (velocity, force etc) can be represented as a vector.
The have in common the direction, magnitude and point of application.

A coordinate system allows us to write a representation of the vector in terms of its
coordinates. For instance, we could use the familiar Cartesian Coordinate system {x,y,x}
and represent ⃗𝑟 as a column.

⃗𝑟 →
(
((
(𝑥

𝑦
𝑧)
))
) (2.17)

Alternatively, we could use unit vectors in the x, y and z-direction. These vectors have
unit length and point in the x, y or z-direction, respectively. They are denoted in varies
ways, depending on taste. Here are 3 examples:

𝑥, 𝑖̂, ⃗𝑒𝑥

𝑦, 𝑗, ⃗𝑒𝑦

𝑧, 𝑘̂, ⃗𝑒𝑧

(2.18)

With this notation, we can write the position vector ⃗𝑟 as follows:

⃗𝑟 = 𝑥𝑥 +𝑦𝑦 +𝑧𝑧

⃗𝑟 = 𝑥𝑖̂ +𝑦𝑗 +𝑧𝑘̂
⃗𝑟 = 𝑥 ⃗𝑒𝑥 + 𝑦 ⃗𝑒𝑦 + 𝑧 ⃗𝑒𝑧

(2.19)

Note that these representations are completely equivalent: the difference is in how the
unit vectors are named. Also note, that these three representations are all given in terms
of vectors. That is important to realize: in contrast to the column notation, now all is
written at a single line. But keep in mind: 𝑥 and 𝑦 are perpendicular vectors.

Other textbooks

Note that other textbooks may use bold symbols to represent vectors:

⃗𝐹 = 𝑚 ⃗𝑎 (2.20)
is the same as

𝑭 = 𝑚𝒂 (2.21)
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Differentiating a vector

We often have to differentiate physical quantities: velocity is the derivative of position
with respect to time; acceleration is the derivative of velocity with respect to time. But
you will also come across differentiation with respect to position.
As an example, let’s take velocity. Like in the 1-dimensional case, we can ask ourselves:
how does the position of an object change over time? That leads us naturally to the
definition of velocity: a change of position divided by a time interval:

Definition Velocity (Vector)

⃗𝑣 ≡ lim
Δ𝑡→0

⃗𝑟(𝑡 + Δ𝑡) − ⃗𝑟(𝑡)
Δ𝑡

= 𝑑 ⃗𝑟
𝑑𝑡

(2.22)

What does it mean? Differentiating is looking at the change of your ‘function’ when you
go from 𝑥 to 𝑥 + 𝑑𝑥:

𝑑𝑓
𝑑𝑥

≡ lim
Δ𝑥→0

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)
Δ𝑥

(2.23)

In 3 dimensions we will have that we go from point P, represented by ⃗𝑟 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧
to ‘the next point’ ⃗𝑟 + 𝑑 ⃗𝑟. The small vector 𝑑 ⃗𝑟 is a small step forward in all three
directions, that is a bit 𝑑𝑥 in the x-direction, a bit 𝑑𝑦 in the y-direction and a bit 𝑑𝑧 in the
z-direction.
Consequently, we can write ⃗𝑟 + 𝑑 ⃗𝑟 as

⃗𝑟 + 𝑑 ⃗𝑟 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 + 𝑑𝑥𝑑𝑥 + 𝑑𝑦𝑦 + 𝑑𝑧𝑧
= (𝑥 + 𝑑𝑥)𝑥 + (𝑦 + 𝑑𝑦)𝑦 + (𝑧 + 𝑑𝑧)𝑧

(2.24)

Now, we can take a look at each component of the position and define the velocity
component as, e.g., in the x-direction

𝑣𝑥 = lim
Δ𝑡→0

𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡)
Δ𝑡

= 𝑑𝑥
𝑑𝑡

(2.25)

Applying this to the 3-dimensional vector, we get

⃗𝑣 ≡ 𝑑 ⃗𝑟
𝑑𝑡

= 𝑑
𝑑𝑡

(𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧)

= 𝑑𝑥
𝑑𝑡

𝑥 + 𝑑𝑦
𝑑𝑡

𝑦 + 𝑑𝑧
𝑑𝑡

𝑧

= 𝑣𝑥𝑥 + 𝑣𝑦𝑦 + 𝑣𝑧𝑧

(2.26)

Note that in the above, we have used that according to the product rule:

𝑑
𝑑𝑡

(𝑥𝑥) = 𝑑𝑥
𝑑𝑡

𝑥 + 𝑥𝑑𝑥
𝑑𝑡

= 𝑑𝑥
𝑑𝑡

𝑥 (2.27)

since 𝑑𝑥̂
𝑑𝑡 = 0 (the unit vectors in a Cartesian system are constant). This may sound trivial:

how could they change; they have always length 1 and they always point in the same
direction. Trivial as this may be, we will come across unit vectors that are not constant as
their direction may change. But we will worry about those examples later.

Now that the velocity of an object is defined, we can introduce its momentum:

Definition Momentum (Vector)
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⃗𝑝 ≡ 𝑚 ⃗𝑣 = 𝑚𝑑 ⃗𝑟
𝑑𝑡

(2.28)

We can use the same reasoning and notation for acceleration:

Definition Acceleration (Vector)

⃗𝑎 ≡ lim
Δ𝑡→0

⃗𝑣(𝑡 + Δ𝑡) − ⃗𝑣(𝑡)
Δ𝑡

= 𝑑 ⃗𝑣
𝑑𝑡

= 𝑑2 ⃗𝑟
𝑑𝑡2

(2.29)

Example: The base jumper

Given the above explanation, we can now reconsider our description of the base
jumper.

We see a z-coordinate pointing upward, where the velocity. As gravitational force is in
the direction of the ground, we can state

𝐹𝑔 = −𝑚𝑔𝑧 (2.30)

Buoyancy is clearly along the z-direction, hence

𝐹𝑏 = 𝜌𝑎𝑖𝑟𝑉 𝑔𝑧 (2.31)

The drag force is a little more complicated as the direction of the drag force is always
against the direction of the velocity − ⃗𝑣. However, in the formula for drag we have 𝑣2.
To solve this, we can write

𝐹𝑓 = −1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴 | 𝑣 | ⃗𝑣 (2.32)

Note that 𝑧 is missing in (32) on purpose. That would be a simplification that is valid
in the given situation, but not in general.

2.1.5 Numerical computation and simulation
In simple cases we can come to an analytical solution. In the case of the base jumper, an
analytical solution exists, though it is not trivial and requires some advanced operations
as separation of variables and partial fractions:
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𝑣(𝑡) = √𝑚𝑔
𝑘

tanh(√𝑘𝑔
𝑚

𝑡) (2.33)

with

𝑘 = 1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴 (2.34)

In this case there is nothing to add or gain from a numerical analysis. Nevertheless, it is
instructive to see how we could have dealt with this problem using numerical techniques.
One way of solving the problem is, to write a computer code (e.g. in python) that
computes from time instant to time instant the force on the jumper, and from that
updates the velocity and subsequently the position.

some initial conditions
t = 0
x = x_0
v = 0
dt = 0.1 

for i is 1 to N:
    compute F: formula
    compute new v: v[i+1] = v[i] - F[i]/m*dt
    compute new x: x[i+1] = x[i] + v[i]*dt
    compute new t: t[i+1] = t[i] + dt

You might already have some experience with numerical simulations. Figure 8 presents a
script for the software Coach, which you might have encountered in secondary school.

Figure 2.8:  An example of a numerical simulation made in Coach. At the left the iterative
calculation process, at the right the initial conditions.

Example: The base jumper

Let us go back to the context of the base jumper and write some code.

First we take: 𝑘 = 1
2𝜌𝑎𝑖𝑟𝐶𝐷𝐴 which eases writing. Newton’s second law then

becomes:

𝑚 ⃗𝑎 = −𝑚 ⃗𝑔 − 𝑘 | 𝑣 | ⃗𝑣 (2.35)

We rewrite this to a proper differential equation for 𝑣 into a finite difference equation.
That is, we go back to how we came to the differential equation:
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𝑚 lim
Δ𝑡→0

⃗𝑣(𝑡 + Δ𝑡) − ⃗𝑣(𝑡)
Δ𝑡

= ⃗𝐹𝑛𝑒𝑡 (2.36)

with ⃗𝐹𝑛𝑒𝑡 = −𝑚 ⃗𝑔 − 𝑘 | 𝑣 | ⃗𝑣

On a computer, we can not literally take the limit of Δ𝑡 to zero, but we can make Δ𝑡
very small. If we do that, we can rewrite the difference equation (thus not taken the
limit):

⃗𝑣(𝑡 + Δ𝑡) = ⃗𝑣(𝑡) +
⃗𝐹

𝑚
Δ𝑡 (2.37)

This expression forms the heart of our numerical approach. We will compute 𝑣 at
discrete moments in time: 𝑡𝑖 = 0, Δ𝑡, 2Δ𝑡, 3Δ𝑡, …. We will call these values 𝑣𝑖. Note
that the force can be calculated at time 𝑡𝑖 once we have 𝑣𝑖.

𝐹𝑖 = 𝑚𝑔 − 𝑘 | 𝑣𝑖 | 𝑣𝑖

𝑣𝑖+1 = 𝑣𝑖 + 𝐹𝑖
𝑚

Δ𝑡
(2.38)

Similarly, we can keep track of the position:

𝑑𝑥
𝑑𝑡

= 𝑣 ⇒ 𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖Δ𝑡 (2.39)

With the above rules, we can write an iterative code:

Important to note is the sign-convention which we adhere to. Rather than using 𝑣2 we
make use of | 𝑣 | 𝑣 which takes into account that drag is always against the direction
of movement. Note as well the similarity between the analytical solution and the
numerical solution.

To come back to our initial problem:
It roughly takes 10 s to get close to terminal velocity (note that without friction the
velocity would be 98 m/s). The building is not high enough to reach this velocity
(safely).
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Exercise 2.10: Base jumper with initial velocity 🌶

Change the code so that the base jumper starts with an initial velocity along the z-
direction.

Is the acceleration in the z-direction with and without initial velocity the same?
Elaborate.
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Exercise 2.11: Unit analysis 🌶

Given the formula 𝐹 = 𝑘𝑣2. Derive the unit of 𝑘, expressed only in SI-units .

Exercise 2.12: Units based on physical constants¹ 🌶 🌶

In physics, we assume that quantities like the speed of light (𝑐) and Newton’s
gravitational constant (𝐺) have the same value throughout the universe, and are
therefore known as physical constants. A third such constant from quantum
mechanics is Planck’s constant (ℏ , ℎ an with a bar). In high-energy physics, people
deal with processes that occur at very small length scales, so our regular SI-units like
meters and seconds are not very useful. Instead, we can combine the fundamental
physical constants into different basis values.

1. Combine 𝑐, 𝐺 and ℏ into a quantity that has the dimensions of length.
2. Calculate the numerical value of this length in SI units (this is known as the

Planck length).
3. Similarly, combine 𝑐, 𝐺 and ℏ into a quantity that has the dimensions of energy

(indeed, known as the Planck energy) and calculate its numerical value.

2.1.6 Examples, exercises and solutions

2.1.6.1 Exercises
### Your code

### Your code

¹Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)
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Exercise 2.13: Reynolds numbers² 🌶 🌶

Physicists often use dimensionless quantities to compare the magnitude of two physical
quantities. Such numbers have two major advantages over quantities with numbers.
First, as dimensionless quantities carry no units, it does not matter which unit system
you use, you’ll always get the same value. Second, by comparing quantities, the
concepts ‘big’ and ‘small’ are well-defined, unlike for quantities with a dimension (for
example, a distance may be small on human scales, but very big for a bacterium).
Perhaps the best known example of a dimensionless quantity is the Reynolds number
in fluid mechanics, which compares the relative magnitude of inertial and drag forces
acting on a moving object:

Re = inertialforces
dragforces

= 𝜌𝑣𝐿
𝜇

(2.40)

where 𝜌 is the density of the fluid (either a liquid or a gas), 𝑣 the speed of the object, 𝐿
its size, and 𝜇 the viscosity of the fluid. Typical values of the viscosity are 1.0 mPa ⋅ s
for water, 50 mPa ⋅ s for ketchup, and 1.8 ⋅ 10−5 Pa ⋅ s for air.

1. Estimate the typical Reynolds number for a duck when flying and when
swimming (you may assume that the swimming happens entirely submerged).
NB: This will require you looking up or making educated guesses about some
properties of these birds in motion. In either case, is the inertial or the drag force
dominant?

2. Estimate the typical Reynolds number for a swimming bacterium. Again
indicate which force is dominant.

3. Oil tankers that want to make port in Rotterdam already put their engines in
reverse halfway across the North sea. Explain why they have to do so.

4. Express the Reynolds number for the flow of water through a (circular) pipe as a
function of the diameter 𝐷 of the pipe, the volumetric flow rate (i.e., volume per
second that flows through the pipe) 𝑄, and the kinematic viscosity 𝜈 ≡ 𝜂/𝜌.

5. For low Reynolds number, fluids will typically exhibit so-called laminar flow, in
which the fluid particles all follow paths that nicely align (this is the transparent
flow of water from a tap at low flux). For higher Reynolds number, the flow
becomes turbulent, with many eddies and vortices (the white-looking flow of
water from the tap you observe when increasing the flow rate). The maximum
Reynolds number for which the flow in a cylindrical pipe is typically laminar is
experimentally measured to be about 2300. Estimate the flow velocity and
volumetric flow rate of water from a tap with a 1.0 cm diameter in the case that
the flow is just laminar.

Exercise 2.14: Powers of ten 🌶

Calculate:

1. 10−4 ⋅ 10−8 =
2. 106

10−19⋅104 =
3. 1012 ⋅ 10−15 =

²Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)
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Exercise 2.15: Moving a box 🌶

A box is on a frictionless incline of 10°. It is pushed upward with a force 𝐹𝑖 for Δ𝑡 =
0.5 s. It is then moving upward (inertia) but slows down due to gravity.

Below is a part of the python code. However, some essential elements of the code are
missing indicated by (..).

1. Include the correct code and run it.
2. Explain the two graphs, highlighting all essential features of the graph by

relating these to the given problem.
3. At what time is the acceleration 0? At what time is the box back at its origin?

The above context is not very realistic as friction is neglected. We, however, can
include friction easily as it is given by ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐹𝑤 = 𝜇 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐹𝑁 , with 𝜇 = 0.05. Note that the
direction of friction changes when the direction of the velocity changes!

4. Extend the code so that friction is included.

Exercise 2.16: Basejumper with parachute 🌶 🌶

Our base jumper has yet not a soft landing. Luckily she has a working parachute. The
parachute opens in 3.8 s reaching a total frontal area of 42.6 m2. We can model the
drag force using ⃗𝐹𝑑𝑟𝑎𝑔 = 𝑘 | 𝑣 | ⃗𝑣 with 𝑘 = 0.37.

Write the code that simulates this jump of the base jumper with deploying the
parachute. Show the (𝐹𝑑𝑟𝑎𝑔, 𝑡)-diagram and the (𝑣, 𝑡)-diagram. What is the minimal
height at which the parachute should be deployed?

Exercise 2.17: Circular motion 🌶 🌶

Remember from secondary school circular motion, where the required force is given
by 𝐹 = 𝑚𝑣2

𝑟 . The corresponding vector form is: ⃗𝐹 = −𝑚𝑣2

𝑟 𝑟̂, or equivalent: ⃗𝐹 =
−𝑚𝑣2

𝑟2 ⃗𝑟. Now let’s simulate that motion.

Assume:

• 𝑚 = 1 kg
• ⃗𝑟0 = (3, 0) m
• ⃗𝑣(0) = (0, 7) m/s

Write the code. You know the output already (a circle with radius of 3)!

Solution 2.18: Solution to Exercise 1

𝐹 = 𝑘𝑣2

= [.][m2

s2 ] ⇒ [.] = [kg
m

] (2.41)
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2.1.6.2 Solutions
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Solution 2.19: Solution to Exercise 2

The physical constants 𝑐, 𝐺 and ℏ have the following numerical values and SI-units:

𝑐 = 2.99792458 ⋅ 108 m/s

𝐺 = 6.674 ⋅ 10−11 m3/(kg ⋅ s2)

ℏ = 1.054 ⋅ 10−34 kgm2/s
(2.42)

Note: the value of 𝑐 is precise, i.e. by definition given this value. The second is defined
via the frequency of radiation corresponding to the transition between the two
hyperfine levels of the ground state of the caesium-133 atom.

If we want to combine these three units into a length scale, ℒ, we try the following:

[ℒ] = [𝑐]𝐴[𝐺]𝐵[ ℏ]𝐶 (2.43)

What we mean here, is that the units of the quantities (denoted by [.]) left and right
should be the same. Thus, we get:

𝑚1 = (𝑚
𝑠

)
𝐴
( 𝑚3

𝑘𝑔𝑠2 )
𝐵

(𝑘𝑔𝑚2

𝑠
)

𝐶

(2.44)

We try to find 𝐴, 𝐵, 𝐶 such that the above equation is valid. We can write this
equation as:

𝑚1 = 𝑚𝐴+3𝐵+2𝐶 ⋅ 𝑘𝑔−𝐵+𝐶 ⋅ 𝑠−𝐴−2𝐵−𝐶 (2.45)

If we split this into requirements for m, kg, s we get:

𝑚 : 1 = 𝐴 + 3𝐵 + 2𝐶
𝑘𝑔 : 0 = 𝐶 − 𝐵
𝑠 : 0 = −𝐴 − 2𝐵 − 𝐶

(2.46)

From the second equation we get 𝐵 = 𝐶 . Substitute this into the first and third and
we find:

𝑚 : 1 = 𝐴 + 5𝐵
𝑠 : 0 = −𝐴 − 3𝐵

(2.47)

Add these two equations: 1 = 2𝐵 → 𝐵 = 1
2  and thus 𝐶 = 1

2  and 𝐴 = −3
2 .

So if we plug these values into our starting equation we see:

ℒ = √ ℏ𝐺
𝑐3 = 1.62 ⋅ 10−35 m (2.48)

We can repeat this for energy, ℰ:

[ℰ] = [𝑐]𝛼[𝐺]𝛽[ ℏ]𝛾 (2.49)

Note: the unit of energy, [J] needs to be written in terms of the basic units: [𝐽 ] =
kgm2/s2.

The outcome is: 𝛼 = 5
2 , 𝛽 = −1

2 , 𝛾 = 1
2  and thus our energy is:

ℰ = √ ℏ𝑐5

𝐺
= 1.96 ⋅ 109 J (2.50)
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Solution 2.20: Solution to Exercise 3

1. The size of a duck is on the order of 30 cm. It flies at a speed of about 70 km/h,
that is 20 m/s. Thus we compute for the Reynolds number of a flying duck:

𝑅𝑒 ≡ 𝜌𝑣𝐿
𝜇

= 4.0 ⋅ 105 (2.51)

Clearly, the inertial force is dominant.

What about a swimming duck? Now the velocity is much smaller: 𝑣 ≈ 1 m/s =
3.6 km/h. The viscosity of water is 𝜇𝑤 = 1.0 mPa ⋅ s and the water density is 1.0 ⋅
103 kg/m3. We, again, calculate the Reynolds number:

𝑅𝑒𝑤 ≡ 𝜌𝑣𝐿
𝜇

= 3.0 ⋅ 105 (2.52)

Hence, also in this case inertial forces are dominant. This perhaps comes as a surprise,
after all the velocity is much smaller and the viscosity much larger. However, the
water density is also much larger!

2. For a swimming bacterium the numbers change. The size is now about 1𝜇m and
the velocity 60𝜇 m/s (numbers taken from internet). That gives:

𝑅𝑒𝑏 ≡ 𝜌𝑣𝐿
𝜇

= 6.0 ⋅ 10−5 (2.53)

and we see that here viscous forces are dominating.

3. For an oil tanker the Reynolds number is easily on the order of 10⁸. Obviously,
viscous forces don’t do much. An oil tanker that wants to slow down can not do
so by just stopping the motors and let the drag force decelerate them: the
Reynolds number shows that the viscous drag is negligible compared to the
inertial forces. Thus, the tanker has to use ots engines to slow down. Again the
inertia of the system is so large, that it will take a long time to slow down. And a
long time, means a long trajectory.

4. For the flow of water through a (circular) pipe the Reynolds number uses as
length scale the pipe diameter. We can relate the velocity of the water in the
pipe tot the total volume that is flowing per second through a cress section of
the pipe:

𝑄 = 𝜋
4
𝐷2𝑣 → 𝑣 = 4𝑄

𝜋𝐷2 (2.54)

Thus we can also write 𝑅𝑒 as:

𝑅𝑒 ≡ 𝜌𝑣𝐷
𝜇

= 4𝑄
𝜋𝑚𝑢

𝜌 𝐷2 = 4𝑄
𝜋𝜈𝐷2 (2.55)

1. If 𝑅𝑒 = 2300 for the pipe flow, we have:

𝑅𝑒 = 𝑣𝐷
𝜈

= 2300 → 𝑣 = 2300𝜈
𝐷

(2.56)

with 𝜈 = 1.0 ⋅ 10−6 m2/s and 𝐷 = 1.0 ⋅ 10−2 m we find: 𝑣 = 0.23 m/s and 𝑄 = 1.8 ⋅
10−5 m3/s = 0.018 liter/s.
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Solution 2.21: Solution to Exercise 4

1. = 10−12

2. = 1021

3. = 10−3
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Solution 2.22: Solution to Exercise 5

# Moving a box

## Importing libraries
import numpy as np
import matplotlib.pyplot as plt

part_4 = 1 # Turn to 0 for first part

## Constants
m = 2 #kg
F = 30 #N
g = 9.81 #m/s^2
theta = np.deg2rad(10) #degrees

mu = 0.02
F_N = m*g*np.cos(theta) #N

## Time step
dt = 0.01 #s
t = np.arange(0, 10, dt) #s
t_F_stop = 0.5

## Initial conditions
x = np.zeros(len(t)) #m
v = np.zeros(len(t)) #m/s

## Loop to calculate position and velocity
for i in range(0, len(t)-1):
    if t[i] < t_F_stop:
        a = F/m - g*np.sin(theta) - F_N*mu*np.where(v[i] != 0,
np.sign(v[i]), 0)*part_4
    else:
        a = -g*np.sin(theta) - F_N*mu*np.where(v[i] != 0, np.sign(v[i]),
0)*part_4
    v[i+1] = v[i] + a*dt
    x[i+1] = x[i] + v[i]*dt

## Plotting results
figs, axs = plt.subplots(1, 2, figsize=(10, 5)) 

axs[0].set_xlabel('Time (s)')
axs[0].set_ylabel('Velocity (m/s)')
axs[0].plot(t, v, 'k.', markersize=1)

axs[1].set_xlabel('Time (s)')
axs[1].set_ylabel('Position (m)')
axs[1].plot(t, x, 'k.', markersize=1)

plt.show()
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Solution 2.23: Solution to Exercise 6

# Simulation of a base jumper 

## Importing libraries
import numpy as np
import matplotlib.pyplot as plt

## Constants
A = 0.7 #m^2
m = 75 #kg
k = 0.37 #kg/m
g = 9.81 #m/s^2

## Time step
dt = 0.01 #s
t = np.arange(0, 12, dt) #s

## Initial conditions
z = np.zeros(len(t)) #m
v = np.zeros(len(t)) #m/s
z[0] = 300 #m

## Deploy parachute
A_max = 42.6 #m^2
t_deploy_start = 2 #s
dt_deploy = 3.8 #s

## Loop to calculate position and velocity
for i in range(0, len(t)-1):
    F = - m*g - k*A*abs(v[i])*v[i]  #N
    v[i+1] = v[i] + F/m*dt #m/s
    z[i+1] = z[i] + v[i]*dt #m
    # Check if the jumper is on the ground
    if z[i+1] < 0:
        break
    # Deploy parachute
    if t[i] > t_deploy_start and t[i] < t_deploy_start + dt_deploy:
        A += (A_max - A)/dt_deploy*dt 

## Plotting results
figs, axs = plt.subplots(1, 2, figsize=(10, 5)) 

axs[0].set_xlabel('Time (s)')
axs[0].set_ylabel('Velocity (m/s)')

axs[0].plot(t, v, 'k.', markersize=1, label='numerical solution')
axs[0].vlines(t_deploy_start, v[t==t_deploy_start],0, color='gray',
linestyle='--', label='parachute deploy')

axs[0].legend()

axs[1].set_xlabel('Time (s)')
axs[1].set_ylabel('Position (m)')

axs[1].plot(t, z, 'k.', markersize=1)
axs[1].vlines(t_deploy_start, 150,300, color='gray', linestyle='--',
label='parachute deploy')

plt.show()
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Solution 2.24: Solution to Exercise 7

import numpy as np
import matplotlib.pyplot as plt

F = 49/3
m1 = 1
dt = 0.001
t = np.arange(0, 100, dt) # s

x1 = np.zeros(len(t)) # m
x1[0] = 3
y1 = np.zeros(len(t)) # m
vx = 0
vy = 7

for i in range(0, len(t)-1):
    ax = -F*(x1[i]-0)/np.sqrt(x1[i]**2 + y1[i]**2)/m1
    ay = -F*(y1[i]-0)/np.sqrt(x1[i]**2 + y1[i]**2)/m1
    vx = vx + ax*dt
    vy = vy + ay*dt
    x1[i+1] = x1[i] + vx*dt
    y1[i+1] = y1[i] + vy*dt

plt.figure(figsize=(4,4))
plt.plot(x1, y1, 'k.', markersize=1)
plt.xlabel('x (m)')
plt.ylabel('y (m)')
plt.show()
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2.2 Newton’s Laws
Updated: October 11, 2025 Now we turn to one of the most profound breakthroughs in
the history of science: the laws of motion formulated by Isaac Newton. These laws
provide a systematic framework for understanding how and why objects move. They
form the backbone of classical mechanics. Using these three laws we can predict the
motion of a falling apple, a car accelerating down the road, or a satellite orbiting Earth
(though some adjustments are required in this context to make use of e.g. GPS!). More
than just equations, they express deep principles about the nature of force, mass, and
interaction.

In this chapter, you will begin to develop the core physicist’s skill: building a simplified
model of the real world, applying physical principles, and using mathematical tools to
reach meaningful conclusions.

2.2.1 Newton’s Three Laws
Much of physics, in particular Classical Mechanics, rests on three laws that carry
Newton’s name:

Newton’s first law (N1)

If no force acts on an object, the object moves with constant velocity.

Newton’s second law (N2)

If a (net) force acts on an object, the momentum of the object will change according
to:

𝑑 ⃗𝑝
𝑑𝑡

= ⃗𝐹 (2.57)

Newton’s third law (N3)

If object 1 exerts a force ⃗𝐹12 on object 2, then object 2 exerts a force ⃗𝐹21 equal in
magnitude and opposite in direction on object 1:

⃗𝐹21 = − ⃗𝐹12 (2.58)

N1 has, in fact, been formulated by Galileo Galilei. Newton has, in his N2, build upon it:
N1 is included in N2, after all:
if ⃗𝐹 = 0, then 𝑑𝑝⃗

𝑑𝑡 = 0 → ⃗𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 → ⃗𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, provided 𝑚 is a constant.

Most people know N2 as

⃗𝐹 = 𝑚 ⃗𝑎 (2.59)
For particles of constant mass, the two are equivalent:
if 𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then

𝑑 ⃗𝑝
𝑑𝑡

= 𝑚𝑑 ⃗𝑣
𝑑𝑡

= 𝑚 ⃗𝑎 (2.60)

Nevertheless, in many cases using the momentum representation is beneficial. The reason
is that momentum is one of the key quantities in physics. This is due to the underlying
conservation law, that we will derive in a minute. Momentum is a more fundamental

33



concept in physics than acceleration. That is another reason why physicists prefer the
second way of looking at forces.

Moreover, using momentum allows for a new interpretation of force: force is that
quantity that - provided it is allowed to act for some time interval on an object - changes
the momentum of that object. This can be formally written as:

𝑑 ⃗𝑝 = ⃗𝐹𝑑𝑡 ↔ Δ ⃗𝑝 = ∫ ⃗𝐹𝑑𝑡 (2.61)

The latter quantity ⃗𝐼 ≡ ∫ ⃗𝐹𝑑𝑡 is called the impulse.

Note

Momentum is in Dutch impuls; the English impulse is in Dutch stoot.

In Newton’s Laws, velocity, acceleration and momentum are key quantities. We repeat
here their formal definition.

Definition

velocity : ⃗𝑣 ≡ lim
Δ𝑡→0

⃗𝑟(𝑡 + Δ𝑡) − ⃗𝑟(𝑡)
Δ𝑡

= 𝑑 ⃗𝑟
𝑑𝑡

acceleration : ⃗𝑎 ≡ lim
Δ𝑡→0

⃗𝑣(𝑡 + Δ𝑡) − ⃗𝑣(𝑡)
Δ𝑡

= 𝑑 ⃗𝑣
𝑑𝑡

momentum : ⃗𝑝 ≡ 𝑚 ⃗𝑣 = 𝑚𝑑 ⃗𝑟
𝑑𝑡

(2.62)

2.2.2 Conservation of Momentum
From Newton’s 2𝑛𝑑 and 3𝑟𝑑 law we can easily derive the law of conservation of
momentum.
Assume there are only two point-particle (i.e. particles with no size but with mass), that
exert a force on each other. No other forces are present. From N2 we have:

𝑑 ⃗𝑝1
𝑑𝑡

= ⃗𝐹21

𝑑 ⃗𝑝2
𝑑𝑡

= ⃗𝐹12

(2.66)

From N3 we know:

⃗𝐹21 = − ⃗𝐹12 (2.67)

And, thus by adding the two momentum equations we get:

Exercise 2.25: 🌶

Consider a point particle of mass m, moving at a velocity 𝑣0 along the x-axis. At 𝑡 = 0
a constant force acts on the particle in the positive x-direction. The force lasts for a
small time interval Δ𝑡.

What is the velocity of the particle for 𝑡 > Δ𝑡 ?
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Solution 2.26: Solution to Exercise 1

Interpret

First we make a sketch.

This is obviously a 1-dimensional problem. So, we can leave out the vector
character of e.g. the force.

Develop

We will use 𝑑𝑝 = 𝐹𝑑𝑡:

𝑑𝑝 = 𝐹𝑑𝑡 ⇒ Δ𝑝 = ∫
Δ𝑡

0
𝐹𝑑𝑡 = 𝐹Δ𝑡 → (2.63)

𝑝(Δ𝑡) = 𝑝(0) + 𝐹Δ𝑡 = 𝑚𝑣0 + 𝐹Δ𝑡 → (2.64)

𝑣(Δ𝑡) = 𝑣0 + 𝐹
𝑚

Δ𝑡 (2.65)

Note that this example could also be solved by N2 in the form of 𝐹 = 𝑚𝑎. It is
merely a matter of taste.

Exercise 2.28: A pushing contest 🌶

Exercise 2.30: Newton’s third law 🌶

The base jumper from chapter 1 just jumped from the tall building. According to
Newton’s third law there are two coupled forces. Which are these, and what is the
consequence of these two forces?

Solution 2.31: Solution to Exercise 3

The gravitational force acts from the earth on the jumper. Newton’s law states that
the jumper thus acts a gravitational force on the earth. Hence, the earth accelerates
towards the jumper!

Although this sounds silly, when comparing this idea to the sun and the planets, we
must draw the conclusion that the sun is actually wobbling as it is pulled towards the
various planets! See also this animated explanation
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𝑑𝑝⃗1
𝑑𝑡

𝑑𝑝⃗2
𝑑𝑡

= ⃗𝐹21

= ⃗𝐹12 = − ⃗𝐹21

} ⇒ (2.68)

𝑑 ⃗𝑝1
𝑑𝑡

+ 𝑑 ⃗𝑝2
𝑑𝑡

= 0 → 𝑑
𝑑𝑡

( ⃗𝑝1 + ⃗𝑝2) = 0 (2.69)

⇒ ⃗𝑝1 + ⃗𝑝2 = 𝑐𝑜𝑛𝑠𝑡 𝑖.𝑒.𝑑𝑜𝑒𝑠𝑛𝑜𝑡𝑑𝑒𝑝𝑒𝑛𝑑𝑜𝑛𝑡𝑖𝑚𝑒 (2.70)

Note the importance of the last conclusion: if objects interact via a mutual force then
the total momentum of the objects can not change. No matter what the interaction
is. It is easily extended to more interacting particles. The crux is that particles interact
with one another via forces that obey N3. Thus for three interacting point particles we
would have (with ⃗𝐹𝑖𝑗 the force from particle i felt by particle j):

𝑑𝑝⃗1
𝑑𝑡

𝑑𝑝⃗2
𝑑𝑡

𝑑𝑝⃗3
𝑑𝑡

= ⃗𝐹21 + ⃗𝐹31

= ⃗𝐹12 + ⃗𝐹32 = − ⃗𝐹21 + ⃗𝐹32

= ⃗𝐹13 + ⃗𝐹23 = − ⃗𝐹31 − ⃗𝐹32

} (2.71)

Sum these three equations:

𝑑 ⃗𝑝1
𝑑𝑡

+ 𝑑 ⃗𝑝2
𝑑𝑡

+ 𝑑 ⃗𝑝3
𝑑𝑡

= 0 → 𝑑
𝑑𝑡

( ⃗𝑝1 + ⃗𝑝2 + ⃗𝑝3) = 0

⇒ ⃗𝑝1 + ⃗𝑝2 + ⃗𝑝3 = 𝑐𝑜𝑛𝑠𝑡. 𝑖.𝑒.𝑑𝑜𝑒𝑠𝑛𝑜𝑡𝑑𝑒𝑝𝑒𝑛𝑑𝑜𝑛𝑡𝑖𝑚𝑒
(2.72)

For a system of 𝑁  particles, extension is straight forward.
Intermezzo: Isaac Newton

At the end of the year of Galilei’s death, Isaac Newton was born in Woolsthorpe-by-
Colsterworth in England. He is regarded as the founder of classical mechanics and
with that he can be seen as the father of physics.Isaac Newton (1642-1727). From
Wikimedia Commons, public domain.In 1661, he started studying at Trinity College,
Cambridge. In 1665, the university temporarily closed due to an outbreak of the
plague. Newton returned to his home and started working on some of his
breakthroughs in calculus, optics and gravitation. Newton’s list of discoveries is
unsurpassed. He invented calculus (at about the same time and independent of
Leibniz). Newton is known for ‘the binomium of Newton’, the cooling law of Newton.
He proposed that light is made of particles. And he formulated his law of gravity.
Finally, he postulated his three laws that started classical mechanics and worked on
several ideas towards energy and work. Much of our concepts in physics are based on
the early ideas and their subsequent development in classical mechanics. The laws
and rules apply to virtually all daily life physical phenomena and only do they require
adaptation when we go to very small scale or extreme velocities and cosmology. In
what follows, we will follow his footsteps, but in a modern way that we owe to many
physicist and mathematicians that over the years shaped the theory of classical
mechanics in a much more comprehensive form. We do not only stand on shoulders
of giants, we stand on a platform carried by many.Interesting to know is that his
mentioning of standing on shoulders can be interpreted as a sneer towards Robert
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Hooke (1635-1703), with he was in a fight with over several things. Hooke was a
rather short man... See, e.g., .

Important

In Newtonian mechanics time does not have a preferential direction. That means, in
the equations derived based on the three laws of Newton, we can replace 𝑡 by −𝑡 and
the motion will have different sign, but that’s it. The path/orbit will be the same, but
traversed in opposite direction. Also in special relativity this stays the same.

However, in daily life we experience a clear distinction between past, present and
future. This difference is not present in this lecture at all. Only by the second of law
thermodynamics the time axis obtains a direction, more about this in classes on
Statistical Mechanics.

2.2.3 Newton’s laws applied

2.2.3.1 Force addition, subtraction and decomposition
Newton’s laws describe how forces affect motion, and applying them often requires
combining multiple forces acting on an object, see Figure 4. This is done through vector
addition, subtraction, and decomposition—allowing us to find the net force and analyze its
components in different directions, see this chapter in the book on linear algebra for a full
elaboration on vector addition and subtraction.

Figure 2.32:  Three forces acting on a particle. In which direction will it accelerate?

Example: Three forces acting on a particle

Consider three forces acting on a particle:

⃗𝐹1 = (1
0), ⃗𝐹2 = (1

1) and ⃗𝐹3 = ( −1
−0.5)

What is the net force acting on the particle and in which direction will the particle
accelerate?

Example: Incline

The box in Figure 5 is at rest. Calculate the frictional force acting on the box.
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Exercise 2.33: Forces acting on a particle in 3D

Three forces act on a particle with mass 𝑚:

⃗𝐹1 =
(
((
( 1

0
−4)

))
), ⃗𝐹2 =

(
((
(1

1
3)
))
)𝑎𝑛𝑑 ⃗𝐹3 =

(
((
( −1

−0.5
1 )

))
) (2.73)

Determine the acceleration of this particle.

Solution 2.34: Solution to Exercise 4

⃗𝐹𝑛𝑒𝑡 = ∑ ⃗𝐹𝑖 = ⃗𝐹1 + ⃗𝐹2 + ⃗𝐹3

=
(
((
( 1

0
−4)

))
) +

(
((
(1

1
3)
))
) +

(
((
( −1

−0.5
1 )

))
) =

(
((
( 1 + 1 − 1

0 + 1 + −0.5
−4 + 3 + 1 )

))
) =

(
((
( 1

0.5
0 )

))
) (2.74)

Hence, the net force acting on the particle is 
√

12 + .52 = 1.1𝑁  and the particle will

accelerate in the direction (
1

0.5
0

), in essence just like in the previous example. The

magnitude of the acceleration is 𝑎 = 𝐹/𝑚 and can only be calculated when the mass
of the particle is specified.

Figure 2.35:  A box is at rest on an incline.

Develop

As the box is not moving (i.e. it has a constant velocity) the sum of forces on the
box must be equal to zero. In the sketch we see two forces that clearly do not add
up to zero. A third force is needed.

Evaluate

If we assume that only friction as a third force is present, we require:

∑
𝑖

⃗𝐹𝑖 = 0 ⇒ ⃗𝐹𝑔 + ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐹𝑁 + ⃗𝐹𝑓 = 0 ⇒ ⃗𝐹𝑓 = − ⃗𝐹𝑔 − ⃗𝐹𝑁 (2.75)

We can progress further by assuming that the friction force acts parallel to the
slope. With this assumption, we can decomposed gravity in its components
perpendicular to the slope and parallel to the slope.

38



⃗𝐹𝑔 = ⃗𝐹𝑔// + ⃗𝐹𝑔⟂ (2.76)

The normal force exactly balances the perpendicular component: that is what a
normal force does. Friction balances the parallel component of gravity:

⃗𝐹𝑓 + ⃗𝐹𝑔// = 0 → ⃗𝐹𝑓 = − ⃗𝐹𝑔// (2.77)

and its magnitude is thus 𝐹𝑓 = 𝐹𝑔 sin 𝛼

Reminder

Remember from secondary school how to break down a force vector into
components.

2.2.3.2 Acceleration due to gravity
In most cases the forces acting on an object are not constant. However, there is a classical
case that is treated in physics (already at secondary school level) where only one,
constant force acts and other forces are neglected. Hence, according to Newton’s second
law, the acceleration is constant.

When we first consider only the motion in the z-direction, we can derive:

𝑎 = 𝐹
𝑚

= 𝑐𝑜𝑛𝑠𝑡. (2.78)

Hence, for the velocity:

𝑣(𝑡) = 𝑣0 + ∫
𝑡𝑒

𝑡0

𝑎𝑑𝑡 = 𝑎(𝑡𝑒 − 𝑡0) + 𝑣0 (2.79)

assuming 𝑡0 = 0𝑎𝑛𝑑𝑡𝑒 = 𝑡 ⇒ 𝑣(𝑡) = 𝑣0 + 𝑎𝑡 the position is described by

𝑠(𝑡) = ∫
𝑡

0
𝑣(𝑡)𝑑𝑡 = ∫

𝑡

0
𝑎𝑡 + 𝑣0𝑑𝑡 = 1

2
𝑎𝑡2 + 𝑣0𝑡 + 𝑠0 (2.80)

Rearranging:

𝑠(𝑡) = 1
2
𝑎𝑡2 + 𝑣0𝑡 + 𝑠0 (2.81)

Example: 2D-motion
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Exercise 2.38: Tossing a stone in the air 🌶

At a height of 1.5m a stone is tossed in the air with a velocity of 10m/s.

1. Calculate the maximum height that it reaches.
2. Calculate the time it takes to reach this point.
3. Calculate with which velocity it hits the ground.

We only considered motion in the vertical direction, however, objects tend to move in
three dimension. We consider now the two-dimensional situation, starting with an
object which is horizontally thrown from a height.

Figure 2.41:  A sketch of the situation where an object is thrown horizontally and the
horizontal distance should be calculated.

In the situation given in Figure 9 the object is thrown with a horizontal velocity of
𝑣𝑥0. As no forces in the horizontal direction act on the object (N1), its horizontal
motion can be described by

𝑠𝑥(𝑡) = 𝑣𝑥0𝑡 (2.82)

In the vertical direction only the gravitational force acts (N2), hence the motion can be
described by (26). Taking the 𝑦-direction upward, a starting height 𝑦(0) = 𝐻0 and
𝑣𝑦(0) = 0 it becomes:

𝑠𝑦(𝑡) = 𝐻0 − 1
2
𝑔𝑡2 (2.83)

The total horizontal traveled distance of the object before hitting the ground then
becomes:

𝑠𝑥,𝑚𝑎𝑥 = 𝑣𝑥√2𝐻0
𝑔

(2.84)

This motion is visualized in Figure 10. The trajectory is shown with 𝑠𝑥 on the
horizontal axis and 𝑠𝑦 on the vertical axis. At regular time intervals Δ𝑡, velocity
vectors are drawn to illustrate the motion. Note that the horizontal and vertical
components of velocity, 𝑣𝑥 and 𝑣𝑦, vary independently throughout the trajectory.
Moreover, ⃗𝑣(𝑡) is the tangent of 𝑠(𝑡).
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Solution 2.39: Solution to Exercise 5

Interpret

Figure 2.40:  A free body diagram of the situation with all relevant quantities.

Only gravity acts on the stone (in the downward direction). We will call the
position of the stone at time 𝑡: 𝑠(𝑡)
Initial conditions: 𝑡 = 0 → 𝑠(0) = 𝑠0 = 1.5 m𝑎𝑛𝑑 ̇𝑠 = 𝑣 = 𝑣0 = 10 m/s

Develop

1. 𝑠(𝑡) = 1
2𝑎𝑡2 + 𝑣0𝑡 + 𝑠0 Highest point reached when ̇𝑠 = 0

2. Δ𝑡 = Δ𝑣
𝑎

3. 𝑠(𝑡) = 1
2𝑎𝑡2 + 𝑣0𝑡 + 𝑠0. We are interested in the stone hitting the ground.

Thus, solve for 𝑠(𝑡) = 0 to find at what time this happens.

Evaluate

1. ̇𝑠 = 𝑎𝑡 + 𝑣0 = −𝑔𝑡 + 𝑣0 = 0 ⇒ 𝑡 = 1.02𝑠

𝑠(1.02) = −1
2 ∗ 9.81 ∗ 1.022 + 10 ∗ 1.02 + 1.5 = 6.6𝑚

1. See above.
2. 𝑠(𝑡) = 1

2𝑎𝑡2 + 𝑣0𝑡 + 𝑠0 = 𝑠𝑒

𝑡 = −𝑣0±√𝑣2
0−4(1

2𝑎(𝑠0−𝑠𝑒))
21

2𝑎 = −10±√102−4(1
2(−9.81)(1.5))

−9.81 = 2.18𝑠
𝑣(2.18) = ̇𝑠(2.18) = 𝑣0 + 𝑎𝑡 = 10 − 9.81 ∗ 2.18 = −11.3 m/s
Note that 𝑡 = −0.14𝑠 is another solution, but not physically realistic.

Assess

The times we calculated are in the right order: First stone is tossed (at 𝑡0 = 0),
then it reaches its highest point (at 𝑡𝑚 = 1.02 s). After that it falls and hits the
ground at 𝑡𝑒 = 2.18 s. Thus 𝑡0 < 𝑡𝑚 < 𝑡𝑒.

Furthermore, the velocity upon impact with the earth is negative as it should: the
stone is falling downward. Its magnitude is on the order of the initial upward
velocity, which makes sense. Finally, our answers have the right units.

NOTE: Some of these solutions can be derived more easily using the concept of
conservation of energy which will be covered in one of the next chapters.41



Exercise 2.43: Horizontal throw 🌶

Derive the above expression (29) yourselves.

Figure 2.42:  The parabolic motion is visualized with blue velocity vectors 𝑣, 𝑣𝑥𝑎𝑛𝑑𝑣𝑦
shown at various points along the trajectory.

Danger

Exercise 2.44: Projectile motion 🌶 🌶

Watch the recording below. What happens with the horizontal distance traveled per
time unit? And with the vertical distance traveled?

Figure 2.45:  A parabolic motion visualized, with the position stored per time unit :alt:
A short video of a small ball being shot upward at an angle. For each frame, it position

is marked by a dot. The dots make up a parabola.

Assume the object with mass 𝑚1 is shot from the ground with a velocity of 𝑣0 at an
angle of 𝜃. Derive where the object hits the ground in terms of 𝑚1, 𝑣0 and 𝜃.

How does the distance traveled changes when the mass of the object is doubled 𝑚2 =
2𝑚1?
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Solution 2.46: Solution to Exercise 7

The horizontal traveled distance is the same per time unit. For the vertical traveled
distance it decreases until 𝑣𝑦 = 0 and then increases.

Interpret

Develop

The basic formulas are:

𝑠𝑥(𝑡) = 𝑣𝑥𝑡 (2.85)

and

𝑠𝑦(𝑡) = 𝑣𝑦𝑡 − 1/2𝑔𝑡2 (2.86)

Evaluate

The horizontal traveled distance is given by:

𝑠𝑥(𝑡) = 𝑣𝑥𝑡 = 𝑣0 cos(𝜃)𝑡 (2.87)

The time the object stays in the air is

𝑠𝑦(𝑡) = 𝑣𝑦𝑡 − 1/2𝑔𝑡2 = 0 ⇒ 𝑡 = 0𝑡 =
2𝑣𝑦

𝑔
= 2𝑣0 sin(𝜃)

𝑔
(2.88)

Hence, the maximum distance traveled is:

𝑠𝑥(𝑡) = 𝑣𝑥𝑡 = 𝑣0 cos(𝜃)2𝑣0 sin(𝜃)
𝑔

= 2𝑣2
𝑜 sin(𝜃) cos(𝜃)

𝑔
(2.89)

Note that the distance traveled is independent of the mass!
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Exercise 2.48: Constant acceleration due to gravity 🌶

We assumed a constant acceleration due to gravity. However, the gravitational force is
given by 𝐹 = −𝐺𝑚𝑀

𝑟2 .
Calculate at what height above the earth the acceleration due to gravity has
‘significantly’ changed from 9.81m/s2, say to 9.80m/s2.

Solution 2.49: Solution to Exercise 8

The acceleration of gravity is found by setting the gravitation force equal to −𝑚𝑔:

−𝐺𝑚𝑀
𝑟2 = −𝑚𝑔(𝑟) ⇒ 𝑔(𝑟) = 𝐺𝑀

𝑟2 (2.90)

with 𝑀  the mass of the earth.

At the surface of the earth, 𝑟 = 𝑅𝑒 we have for the value of 𝑔𝑒 = 9.81 m/s2. We look
for the height above the earth surface where 𝑔 has dropped to 9.80 m/s2. If we call
this height 𝐻 , we write for the distance to the center of the earth 𝑟 = 𝑅𝑒 + 𝐻 .

Thus, we look for 𝑔(𝑟)
𝑔𝑒

= 9.80(m/s2)
9.81(m/s2) = 0.999:

𝑔(𝑟)
𝑔𝑒

= 𝐺𝑀/𝑟2

𝐺𝑀/𝑅2
𝑒

→ 𝑅2
𝑒

𝑟2 = 𝑅2
𝑒

(𝑅𝑒 + 𝐻)2 = 9.80
9.81

= 0.999 (2.91)

If we solve 𝐻  from this equation we find: 𝐻 = 3.25 km (we used 𝑅𝑒 = 6378 km).

Note

We could have also looked at the ratios (between 𝑔 and 𝑟), and found that 𝑅2 =√
.999 ⋅ 6378 = 6374.8 km. Hence, 𝐻 = 3.2 km.

If we would have said: ‘significant change’ in means 𝑔 → 9.81 → 9.71 m/s2, we
would have found 𝐻 = 32.8 km.

Understand that the case above is specific in physics: in most realistic contexts
multiple forces are acting upon the object. Hence the equation of motion does not
become 𝑠(𝑡) = 𝑠0 + 𝑣0𝑡 + 1/2𝑎𝑡2

2.2.3.3 Frictional forces
There are two main types of frictional force:

Exercise 2.50: A rocket in space 🌶

A rocket moves freely horizontal through space. At position 𝑥 = 2 it turns on its
propulsion. At position 𝑥 = 4 it turns off its propulsion. The force due to this
propulsion is directed perpendicular to the x-direction.

Provide a sketch of its movement highlighting all important parts.
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Exercise 2.51: Particle movement 🌶 🌶

Consider a particle which will travel a distance 𝑥. Find two different mathematical
expressions for a force acting on the particle in such a way that the particle will travel
the same distance in the same time for each 𝐹(𝑡) compared to a particle which travels
at constant speed. Assume no initial velocity for the two particles.

• Static friction prevents an object from starting to move. It adjusts in magnitude up
to a maximum value, depending on how much force is trying to move the object.
This maximum is given by

𝐹𝑠𝑡𝑎𝑡𝑖𝑐,𝑚𝑎𝑥 = 𝜇𝑠𝑁 (2.100)

Solution 2.52: Solution to Exercise 10

Uniform motion (𝐹 = 𝑚𝑎 = 0 → 𝑠 = 𝑣0𝑡).

Constant acceleration 𝑎 = 𝑐𝑜𝑛𝑠𝑡 → 𝑠 = 1/2𝑎𝑡2, with 𝑎 = 2𝑣2
0

𝑠 .

Consider the third being a harmonic oscillating force field: 𝐹(𝑡) = 𝐴 sin(2𝜋𝑓𝑡) Then
the equation of motion becomes:

𝑎 = 𝐹/𝑚 = 𝐴
𝑚

sin(2𝜋𝑓𝑡) (2.92)

𝑣 = ∫ 𝑎𝑑𝑡 = 𝐴
𝑚2𝜋𝑓

cos(2𝜋𝑓𝑡) + 𝐶0 (2.93)

Assuming 𝑣(0) = 0 → 𝐶0 = − 𝐴
𝑚2𝜋𝑓

And,

𝑥 = ∫ 𝑣𝑑𝑡 = 𝐴
𝑚(2𝜋𝑓)2 sin(2𝜋𝑓𝑡) + 𝐶0𝑡 + 𝐶1 (2.94)

Assuming 𝑥(0) = 0 → 𝐶1 = 0

Hence:

𝑥 = 𝐴
𝑚(2𝜋𝑓)2 sin(2𝜋𝑓𝑡) − 𝐴

𝑚2𝜋𝑓
𝑡 (2.95)

Now, finding traveling the same distance in the same time AND the harmonic
oscillation is complete (hence, 𝑓 = 1

𝑡𝑒
):

𝑣0𝑡𝑒 = 𝐴𝑡2𝑒
𝑚(2𝜋)2 sin(2𝜋) − 𝐴𝑡𝑒

𝑚2𝜋
𝑡𝑒 (2.96)

𝑣0𝑡𝑒 = − 𝐴𝑡2𝑒
𝑚2𝜋

(2.97)

𝑣0 = − 𝐴𝑡𝑒
𝑚2𝜋

(2.98)

𝑚
𝐴

= − 𝑡𝑒
𝑣02𝜋

(2.99)
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where 𝜇𝑠 is the coefficient of static friction and 𝑁  is the normal force. If the applied force
exceeds this maximum, the object begins to slide.

• Kinetic (dynamic) friction opposes motion once the object is sliding. Its
magnitude is generally constant and given by

𝐹𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝜇𝑘𝑁 (2.101)

where 𝜇𝑘 is the coefficient of kinetic friction. This force does not depend on the velocity
of the object, only on the normal force and surface characteristics.

Friction always acts opposite to the direction of intended or actual motion and is essential
in both preventing and controlling movement.

Material Pair Static Friction (𝜇𝑠) Kinetic Friction (𝜇𝑘)
Rubber on dry concrete 1.0 0.8
Steel on steel (dry) 0.74 0.57
Wood on wood (dry) 0.5 0.3
Aluminum on steel 0.61 0.47
Ice on ice 0.1 0.03
Glass on glass 0.94 0.4
Copper on steel 0.53 0.36
Teflon on Teflon 0.04 0.04
Rubber on wet concrete 0.6 0.5
Leather on wood 0.56 0.4

Values are approximate and can vary depending on surface conditions.

Note

Not always are the friction coefficients constants. They may, for instance, depend on
the relative velocity between the two materials.

2.2.3.4 Momentum example
The above theoretical concept is simple in its ideas:

• a particle changes its momentum whenever a force acts on it;
• momentum is conserved;
• action = - reaction.

Exercise 2.53: Block on an incline

A block with mass 𝑚 is put on an inclined plane of which we can change the
inclination angle 𝜃.

1. Determine the angle at which it starts to slide in terms of mass 𝑚, inclination
angle 𝜃, acceleration due to gravity 𝑔 and coefficient of static friction 𝜇𝑠.

2. Once it starts to slide, it will accelerate. Determine its acceleration in terms of
mass 𝑚, inclination angle 𝜃, acceleration due to gravity 𝑔 and coefficient of
kinetic friction 𝜇𝑓 .
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Solution 2.54: Solution to Exercise 11

1. There a two forces acting on 𝑚 parallel to the inclined plane: friction and
gravity’s component parallel to the slope. These two determine the motion
along the slope: if we tilt the plane the component of gravity parallel to the
slope gets bigger. The particle will start moving when we pass: 𝐹𝑔𝑥

= 𝐹𝑠 →
𝑚𝑔 sin(𝜃) = 𝑚𝑔𝜇𝑠 cos(𝜃) ⇒ 𝜃𝑚𝑎𝑥 = tan−1(𝜇𝑠)

2. Once the particle is sliding downward, gravity and the kinetic friction determine
how fast:

𝐹𝑛𝑒𝑡 = 𝐹𝑔𝑥
− 𝐹𝑓 → 𝑚𝑎 = 𝑚𝑔 sin(𝜃) − 𝑚𝑔𝜇𝑘 cos(𝜃) ⇒ (2.102)

and

𝑎 = 𝑔(sin(𝜃) − 𝜇𝑘 cos(𝜃)) (2.103)

Exercise 2.55: 🌶

A point particle (mass 𝑚) is dropped from rest at a height ℎ above the ground. Only
gravity acts on the particle with a constant acceleration 𝑔 (= 9.813 m/s2).

• Find the momentum when the particle hits the ground.
• What would be the earth’ velocity upon impact?

But it is incredible powerful and so generic, that finding when and how to use it is much
less straight forward. The beauty of physics is its relatively small set of fundamental laws.
The difficulty of physics is these laws can be applied to almost anything. The trick is how
to do that, how to start and get the machinery running. That can be very hard. Luckily
there is a recipe to master it: it is called practice.

2.2.4 Forces & Inertia
Newton’s laws introduce the concept of force. Forces have distinct features:

• forces are vectors, that is, they have magnitude and direction;
• forces change the motion of an object:

‣ they change the velocity, i.e. they accelerate the object

⃗𝑎 =
⃗𝐹

𝑚
↔ 𝑑 ⃗𝑣 = ⃗𝑎𝑑𝑡 =

⃗𝐹𝑑𝑡
𝑚

(2.108)

• or, equally true, they change the momentum of an object

𝑑 ⃗𝑝
𝑑𝑡

= ⃗𝐹 ↔ 𝑑 ⃗𝑝 = ⃗𝐹𝑑𝑡 (2.109)

Many physicists like the second bullet: forces change the momentum of an object, but for
that they need time to act.

Momentum is a more fundamental concept in physics than acceleration. That is another
reason why physicists prefer the second way of looking at forces.

Connecting physics and calculus
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Solution 2.56: Solution to Exercise 12

Let’s do this one together. We follow the standard approach of IDEA: Interpret (and
make your sketch!), develop (think ‘model’), evaluate (solve your model) and assess
(does it make any sense?).

Interpret

First a sketch: draw what is needed, no more, no less.

Develop

Actually this is half of the work, as when deciding what is needed we need to
think what the problem really is. Above, is a sketch that could work. Both the
object 𝑚 and the earth (mass 𝑀 ) are drawn schematically. On each of them acts a
force, where we know that on 𝑚 standard gravity works. As a consequence of N3,
a force equal in strength but opposite in direction acts on 𝑀 .
Why do we draw forces? Well, the question mentions ‘momentum the particle hits
the ground’. Momentum and forces are coupled via N2.

We have drawn a z-coordinate: might be handy to remind us that this looks like a
1D problem (remember: momentum and force are both vectors).

As a first step, we ignore the motion of the earth. Argument? The magnitude of
the ratio of the acceleration of earth over object is given by:

𝑎𝑒
𝑎𝑜

= | 𝐹𝑜→𝑒 | /𝑚𝑒
| 𝐹𝑒→𝑜 | /𝑚𝑜

= 𝑚𝑜
𝑚𝑒

(2.104)

here for the second equality we used N3.

For all practical purposes, the mass of the object is many orders of magnitude
smaller than that of the earth. Hence, we can conclude that the acceleration of the
earth is many orders of magnitude less than that of the object. The latter is of the
order of 𝑔, gravity’s acceleration constant at the earth. Thus, the acceleration of
the earth is next to zero and we can safely assume our lab system, that is
connected to the earth, can be treated as an inertial system with, for us, zero
velocity.

Evaluate

The remainder is straightforward. Now we have an object, that moves under a
constant force. So its velocity will increase linearly in time:

𝑑𝑝
𝑑𝑡

= −𝑚𝑔 ⇒ 𝑝(𝑡) = 𝑚𝑣0⏟
=0

− 𝑚𝑔𝑡 = −𝑚𝑔𝑡 (2.105)

From the momentum we can calculate the velocity and from the velocity the
position:

𝑣 = −𝑔𝑡 ⇒ 𝑑𝑧
𝑑𝑡

= −𝑔𝑡 ⇒ 𝑧(𝑡) = 𝑧0⏟
=𝐻

− 1
2
𝑔𝑡2 = 𝐻 − 1

2
𝑔𝑡2 (2.106)

Solve for 𝑧(𝑇 ) = 0 and find 𝑇 = √2𝐻
𝑔 . Substitute this into the relation for 𝑣:

𝑣(𝑇 ) = −
√

2𝑔𝐻 . As the earth-object system has conserved momentum, the
velocity of the earth is to a good approximation:

𝑝𝑒 + 𝑝𝑜 = 0 ⇒ 𝑣𝑒 = −𝑚𝑜
𝑚𝑒

𝑣𝑜 = 𝑚𝑜
𝑚𝑒

√2𝑔𝐻 (2.107)

AssessWe found that the particle changed its momentum from 𝑝𝑖 = 0 to 𝑝𝑓 = −𝑚𝑣. The
earth compensates for this, to keep momentum conserved. That gave that earth
got a tiny, tiny upwards velocity. We could estimate the displacement of the earth.
Suppose, the particle has mass 𝑚=1kg and is dropped from a height 𝐻 = 100m.
Then we get for the velocity of the mass upon impact: 𝑣 = −44.3m/s and a falling
time Δ𝑡 = 4.5s. For the earth we thus find that during the process the velocity is
smaller than 𝑣𝑒 and thus, the distance traveled by earth towards the mass is less
than Δ𝑥𝑒 < 𝑣𝑒Δ𝑡 = 1.6 ⋅ 10−24m. Indeed completely negligible, the size of the
nucleus of an atom is many orders of magnitude bigger!
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Let’s look at a particle of mass 𝑚, that has initially (say at 𝑡 = 0) a velocity 𝑣0. For 𝑡 >
0 the particle is subject to a force that is of the form 𝐹 = −𝑏𝑣. This is a kind of
frictional force: the faster the particle goes, the larger the opposing force will be.

We would like to know how the position of the particle is as a function of time.

We can answer this question by applying Newton 2:

𝑚𝑑𝑣
𝑑𝑡

= 𝐹 ⇒ 𝑚𝑑𝑣
𝑑𝑡

+ 𝑏𝑣 = 0 (2.110)

Clearly, we have to solve a differential equation which states that if you take the
derivative of 𝑣 you should get something like −𝑣 back. From calculus we know, that
exponential function have the feature that when we differentiate them, we get them
back. So, we will try 𝑣(𝑡) = 𝐴𝑒−𝜇𝑡 with 𝐴 and 𝜇 to be determined constants.

We substitute our trial 𝑣:

𝑚 ⋅ 𝐴 ⋅ −𝜇𝑒−𝜇𝑡 + 𝑏 ⋅ 𝐴𝑒−𝜇𝑡 = 0 (2.111)

This should hold for all 𝑡. Luckily, we can scratch out the term 𝑒−𝜇𝑡, leaving us with:

−𝑚𝐴𝜇 + 𝐴𝑏 = 0 (2.112)

We see, that also our unknown constant 𝐴 drops out. And, thus, we find

𝜇 = 𝑏
𝑚

(2.113)

Next we need to find 𝐴: for that we need an initial condition, which we have: at 𝑡 = 0
is 𝑣 = 𝑣0. So, we know:

𝑣(𝑡) = 𝐴𝑒− 𝑏
𝑚𝑡𝑎𝑛𝑑𝑣(0) = 𝑣0 (2.114)

From the above we see: 𝐴 = 𝑣0 and our final solution is:

𝑣(𝑡) = 𝑣0𝑒− 𝑏
𝑚𝑡 (2.115)

From the solution for 𝑣, we easily find the position of 𝑚 as a function of time. Let’s
assume that the particle was in the origin at 𝑡 = 0, thus 𝑥(0) = 0. So, we find for the
position

𝑑𝑥
𝑑𝑡

≡ 𝑣 = 𝑣0𝑒− 𝑏
𝑚𝑡 ⇒ 𝑥 = 𝑣0 ⋅ (−𝑚

𝑏
𝑒− 𝑏

𝑚𝑡) + 𝐵 (2.116)

We find 𝐵 with the initial condition and get as final solution:

𝑥(𝑡) = 𝑚𝑣0
𝑏

(1 − 𝑒− 𝑏
𝑚𝑡) (2.117)

If we inspect and assess our solution, we see: the particle slows down (as is to be
expected with a frictional force acting on it) and eventually comes to a stand still. At
that moment, the force has also decreased to zero, so the particle will stay put.

2.2.4.1 Inertia
Inertia is denoted by the letter 𝑚 for mass. And mass is that property of an object that
characterizes its resistance to changing its velocity. Actually, we should have written
something like 𝑚𝑖, with subscript i denoting inertia.
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Why? There is another property of objects, also called mass, that is part of Newton’s
Gravitational Law.

Two bodies of mass 𝑚1 and 𝑚2 that are separated by a distance 𝑟12 attract each other via
the so-called gravitational force (𝑟̂12 is a unit vector along the line connecting 𝑚1 and
𝑚2):

⃗𝐹12 = −𝐺𝑚1𝑚2
𝑟2
12

𝑟̂12 (2.118)

Here, we should have used a different symbol, rather than 𝑚. Something like 𝑚𝑔, as it is
by no means obvious that the two ‘masses’ 𝑚𝑖 and 𝑚𝑔 refer to the same property. If you
find that confusing, think about inertia and electric forces. Two particles with each an
electric charge, 𝑞1 and 𝑞2, respectively exert a force on each other known as the Coulomb
force:

⃗𝐹𝐶,12 = 1
4𝜋𝜀0

𝑞1𝑞2
𝑟2
12

𝑟̂12 (2.119)

We denote the property associated with electric forces by 𝑞 and call it charge. We have no
problem writing

⃗𝐹 = 𝑚 ⃗𝑎

⃗𝐹𝐶 = 1
4𝜋𝜀0

𝑞𝑄
𝑟2 𝑟̂ (2.120)

We do not confuse 𝑞 by 𝑚 or vice versa. They are really different quantities: 𝑞 tells us that
the particle has a property we call ‘charge’ and that it will respond to other charges,
either being attracted to, or repelled from. How fast it will respond to this force of
another charged particle depends on 𝑚. If 𝑚 is big, the particle will only get a small
acceleration; the strength of the force does not depend on 𝑚 at all. So far, so good. But
what about 𝑚𝑔? That property of a particle that makes it being attracted to another
particle with this same property, that we could have called ‘gravitational charge’. It is
clearly different from ‘electrical charge’. But would it have been logical that it was also
different from the property inertial mass, 𝑚𝑖?

⃗𝐹 = 𝑚𝑖 ⃗𝑎

⃗𝐹𝑔 = −𝐺
𝑚𝑔𝑀𝑔

𝑟2 𝑟̂
(2.121)

As far as we can tell (via experiments) 𝑚𝑖 and 𝑚𝑔 are the same. Actually, it was Einstein
who postulated that the two are referring to the same property of an object: there is no
difference.

Force field
We have seen, forces like gravity and electrostatics act between objects. When you push a
car, the force is applied locally, through direct contact. In contrast, gravitational and
electrostatic forces act over a distance — they are present throughout space, though they
still depend on the positions of the objects involved.

One powerful way to describe how a force acts at different locations in space is through
the concept of a force field. A force field assigns a force vector (indicating both direction
and magnitude) to every point in space, telling you what force an object would
experience if placed there.
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For example, the graph below at the left shows a gravitational field, described by ⃗𝐹𝑔 =
𝐺𝑚𝑀

𝑟2 𝑟̂. Any object entering this field is attracted toward the central mass with a force
that depends on its distance from that mass’s center.

The figure on the right shows the force field that a positively charged particle would feel
due to the presence of 2 negatively charged particles (both of the same charge). Clearly
this is a much more complicated force field.

Measuring mass or force
So far we did not address how to measure force. Neither did we discuss how to measure
mass. This is less trivial than it looks at first side. Obviously, force and mass are coupled
via N2: 𝐹 = 𝑚𝑎.

Figure 2.58:  Can force be measured using a balance?

The acceleration can be measured when we have a ruler and a clock, i.e. once we have
established how to measure distance and how to measure time intervals, we can measure
position as a function of time and from that velocity and acceleration.

But how to find mass? We could agree upon a unit mass, an object that represents by
definition 1kg. In fact we did. But that is only step one. The next question is: how do we
compare an unknown mass to our standard. A first reaction might be: put them on a
balance and see how many standard kilograms you need (including fractions of it) to
balance the unknown mass. Sounds like a good idea, but is it? Unfortunately, the answer
is not a ‘yes’.

As on second thought: the balance compares the pull of gravity. Hence, it ‘measures’
gravitational mass, rather than inertia. Luckily, Newton’s laws help. Suppose we let two
objects, our standard mass and the unknown one, interact under their mutual interaction
force. Every other force is excluded. Then, on account on N2 we have

{ 𝑚1𝑎1 = 𝐹21
𝑚2𝑎2 = 𝐹12 = −𝐹21

(2.122)

where we used N3 for the last equality. Clearly, if we take the ratio of these two equations
we get:

𝑚1
𝑚2

= | 𝑎2
𝑎1

| (2.123)

irrespective of the strength or nature of the forces involved. We can measure acceleration
and thus with this rule express the unknown mass in terms of our standard.

Note
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We will not use this method to measure mass. We came to the conclusion that we
can’t find any difference in the gravitational mass and the inertial mass. Hence, we
can use scales and balances for all practical purposes. But the above shows, that we
can safely work with inertial mass: we have the means to measure it and compare it to
our standard kilogram.

Now that we know how to determine mass, we also have solved the problem of
measuring force. We just measure the mass and the acceleration of an object and from N2
we can find the force. This allows us to develop ‘force measuring equipment’ that we can
calibrate using the method discussed above.

Intermezzo: kilogram, unit of mass

In 1795 it was decided that 1 gram is the mass of 1 cm of water at its melting point.
Later on, the kilogram became the unit for mass. In 1799, the kilogramme des
Archives was made, being from then on the prototype of the unit of mass. It has a
mass equal to that of 1 liter of water at 4°C (when water has its maximum
density).The International Prototype of the Kilogram, whose mass was defined to be
one kilogram from 1889 to 2019. Picture by BIPM, CC BY-SA 3.0 igo, https://commons.
wikimedia.org/w/index.php?curid=117707466In recent years, it became clear that
using such a standard kilogram does not allow for high precision: the mass of the
standard kilogram was, measured over a long time, changing. Not by much (on the
order of 50 micrograms), but sufficient to hamper high precision measurements and
setting of other standards. In modern physics, the kilogram is now defined in terms of
Planck’s constant. As Planck’s constant has been set (in 2019) at exactly , the kilogram
is now defined via , the meter and second.

2.2.4.2 Eötvös experiment on mass
The question whether inertial mass and gravitational mass are the same has put
experimentalists to work. It is by no means an easy question. Gravity is a very weak
force. Moreover, determining that two properties are identical via an experiment is
virtually impossible due to experimental uncertainty. Experimentalist can only tell the
outcome is ‘identical’ within a margin. Newton already tried to establish experimentally
that the two forms of mass are the same. However, in his days the inaccuracy of
experiments was rather large. Dutch scientist Simon Stevin concluded in 1585 that the
difference must be less than 5%. He used his famous ‘drop masses from the church’
experiments for this (they were primarily done to show that every mass falls with the
same acceleration).

A couple of years later, Galilei used both fall experiments and pendula to improve this to:
less than 2%. In 1686, Newton using pendula managed to bring it down to less than 1‰ .

An important step forward was set by the Hungarian physicist, Loránd Eötvös
(1848-1918). We will here briefly introduce the experiment. For a full analysis, we need
knowledge about angular momentum and centrifugal forces that we do not deal with in
this book.

The experiment
The essence of the Eötvös experiment is finding a set up in which both gravity (sensitive
to the gravitational mass) and some inertial force (sensitive to the inertial mass) are
present. Obviously, gravitational forces between two objects out of our daily life are

52



extremely small. These will be very difficult to detect and thus introduce a large error if
the experiment relies on measuring them. Eötvös came up with a different idea. He
connected two different objects with different masses, 𝑚1 and 𝑚2, via a (almost) massless
rod. Then, he attached a thin wire to the rod and let it hang down.

Figure 2.59:  Torsion balance used by Eötvös.

This is a sensitive device: any mismatch in forces or torques will have the setup either tilt
or rotate a bit. Eötvös attached a tiny mirror to one of the arms of the rod. If you shine a
light beam on the mirror and let it reflect and be projected on a wall, then the smallest
deviation in position will be amplified to create a large motion of the light spot on the
wall.

In Eötvös experiment two forces are acting on each of the masses: gravity, proportional to
𝑚𝑔, but also the centrifugal force 𝐹𝑐 = 𝑚𝑖𝑅𝜔2, the centrifugal force stemming from the
fact that the experiment is done in a frame of reference rotating with the earth. This force
is proportional to the inertial mass. The experiment is designed such that if the rod does
not show any rotation around the vertical axis, then the gravitational mass and inertial
mass must be equal. It can be done with great precision and Eötvös observed no
measurable rotation of the rod. From this he could conclude that the ratio of the
gravitational over inertial mass differed less from 1 than 5 ⋅ 10−8. Currently,
experimentalist have brought this down to 1 ⋅ 10−15.

Note

The question is not if 𝑚𝑖/𝑚𝑔 is different from 1. If that was the case but the ratio
would always be the same, then we would just rescale 𝑚𝑔, that is redefine the value of
the gravitational const 𝐺 to make 𝑚𝑔 equal to 𝑚𝑖. No, the question is whether these
two properties are separate things, like mass and charge. We can have two objects
with the same inertial mass but give them very different charges. In analogy: if 𝑚𝑖 and
𝑚𝑔 are fundamentally different quantities then we could do the same but now with
inertial and gravitational mass.

Tip

Want to know more about this experiment? Watch this videoclip.
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Exercise 2.60: Force on a particle 🌶

Consider a point particle of mass 𝑚, moving at a velocity 𝑣0 along the x-axis. At 𝑡 = 0
a constant force acts on the particle in the negative x-direction. The force lasts for a
small time interval Δ𝑡.

What is the strength of the force, if it brings the particle exactly to a zero-velocity?
Start by making a drawing.

2.2.5 Examples, exercises and solutions
Here are some examples and exercises that deal with forces. Make sure you practice
IDEA.

Exercise 2.61: Shooting a ball 🌶

A ball is shot from a 10m high hill with a velocity of 10m/s under an angle of 30𝑜, see
Figure 1.

1. How long is the ball in the air?
2. How far does it travel in the horizontal direction?
3. With what velocity does the ball hit the ground?

Figure 2.62:  A ball on a hill launched under an angle.

Exercise 2.63: Constant force on a particle 🌶

A particle of mass 𝑚 moves along the 𝑥-axis. At time 𝑡 = 0 it is at the origin with
velocity 𝑣0. For 𝑡 > 0, a constant force acts on the particle. This is a 1-dimensional
problem.

• Derive the acceleration of the particle as a function of time.
• Derive the velocity of the particle as a function of time.
• Derive the position of the particle as a function of time.

54



Exercise 2.64: Time dependent force on a particle 🌶

A particle of mass 𝑚 moves along the 𝑥-axis. At time 𝑡 = 0 it is at the origin with
velocity 𝑣0. For 𝑡 > 0 the particle is subject to a force 𝐹0 sin(2𝜋𝑓0𝑡). This is a 1-
dimensional problem.

• Calculate the acceleration of the particle as a function of time.
• Calculate the velocity of the particle as a function of time.
• Calculate the position of the particle as a function of time.

Exercise 2.65: Particle trajectory 🌶

A particle follows a straight path with a constant velocity. At 𝑡 = 0 the particle is at
point 𝐴 with coordinate (0, 𝑦𝐴), while at 𝑡 = 𝑡1 it is at 𝐵 with coordinate (𝑥𝐵, 0). The
coordinates are given in a Cartesian system. The problem is 2-dimensional.

1. Make a sketch.
2. Find the position of the particle at arbitrary time 0 < 𝑡 < 𝑡1.
3. Derive the velocity of the particle from position as function of time.

Represent vectors in a Cartesian coordinate system using the unit vectors ̂𝑖 and 𝑗.

2.2.5.1 Exercises set 1

2.2.5.2 Answers set 1

2.2.5.3 Exercises set 2
interactive(children=(FloatSlider(value=0.7853981633974483,
description='theta', max=1.5707963267948966, min=0…

<function __main__.update(theta, F_girl)>

interactive(children=(FloatSlider(value=0.7853981633974483,
description='theta', max=1.5707963267948966, step=…

<function __main__.update(theta, mu)>

interactive(children=(IntSlider(value=1, description='force_num', max=3,
min=1), Output()), _dom_classes=('wid…

<function __main__.update(force_num)>

Exercise 2.66: Different coordinate systems 🌶 🌶

In Classical Mechanics we often use a coordinate system to describe motion of object.
In this exercise, you will look at two Cartesian coordinate systems. System S has
coordinates (𝑥, 𝑦) and corresponding unit vectors 𝑥 and 𝑦.
The second system, S’, uses (𝑥′, 𝑦′) and corresponding unit vectors. The 𝑥′-axis makes
an angle of 30∘ with the 𝑥-axis (measured counter-clockwise).

1. Make a sketch.
2. Determine the relations between 𝑥′ and 𝑥, 𝑦 as well as between 𝑦′ and 𝑥, 𝑦

An object has, according to S, a velocity of ⃗𝑣 = 3𝑥 + 5𝑦.
1. Determine the velocity according to S’.
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Exercise 2.67: Rotating unit vectors 🌶

According to your observations, a particle is located at position (1,0) (you use a
Cartesian coordinate system). The particle has no velocity and no forces are acting on
it.
Another observer, S’, uses a Cartesian coordinate system described by (𝑥′, 𝑦′). You
notice that her unit vectors rotate at a constant speed compared to your unit vectors:

𝑥′ = cos(2𝜋𝑓𝑡)𝑥 + sin(2𝜋𝑓𝑡)𝑦 (2.124)

𝑦′ = − sin(2𝜋𝑓𝑡)𝑥 + cos(2𝜋𝑓𝑡)𝑦 (2.125)

1. Find the position of the particle according to the other observer, S’.
2. Calculate the velocity of the particle according to S’.

Exercise 2.68: Moving over a frictionless table🌶

A particle of mass 𝑚 moves at a constant velocity 𝑣0 over a frictionless table. The
direction it is moving in, is at 45∘ with the positive 𝑥-axis. At some point in time, the
particle experiences a force ⃗𝐹 = −𝑏 ⃗𝑣 with 𝑏 > 0.
We call this time 𝑡 = 0 and take the position of the particle at that time as our origin.

1. Make a sketch.
2. Determine whether this problem needs to be analyzed as a 1D or a 2D problem.
3. Set up N2 in the form 𝑚𝑑 ⃗𝑣

𝑑𝑡 = ⃗𝐹
4. Solve N2 and find the velocity of the particle as a function of time.
5. What happens to the particle for large 𝑡?

interactive(children=(FloatSlider(value=9.81, description='g (m/s²)',
max=15.0, min=1.5), IntSlider(value=1, d…

Exercise 2.69: Parabolic trajectory with maximum area³ 🌶 🌶

A ball is thrown at speed 𝑣 from zero height on level ground. We want to find the
angle 𝜃 at which it should be thrown so that the area under the trajectory is
maximized.

1. Sketch of the trajectory of the ball.
2. Use dimensional analysis to relate the area to the initial speed 𝑣 and the

gravitational acceleration 𝑔.
3. Write down the 𝑥 and 𝑦 coordinates of the ball as a function of time.
4. Find the total time the ball is in the air.
5. The area under the trajectory is given by 𝐴 = ∫ 𝑦d𝑥. Make a variable

transformation to express this integral as an integration over time.
6. Evaluate the integral. Your answer should be a function of the initial speed 𝑣

and angle 𝜃.
7. From your answer at (6), find the angle that maximizes the area, and the value of

that maximum area.

³Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)
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Exercise 2.70: Two attracting particles⁴ 🌶

Two particles on a line are mutually attracted by a force 𝐹 = −𝑎𝑟, where 𝑎 is a
constant and 𝑟 the distance of separation. At time 𝑡 = 0, particle A of mass 𝑚 is
located at the origin, and particle B of mass 𝑚/4 is located at 𝑟 = 5.0 cm. Both
particles have zero velocity at 𝑡 = 0. If the particles are at rest at 𝑡 = 0, at what value
of 𝑟 do they collide?

Solution 2.71: Solution to Exercise 1

⃗𝐹 = −𝑚𝑣0
Δ𝑡 𝑥

<function __main__.run_animation(g=9.81, M=1)>

⁴Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)
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Solution 2.73: Solution to Exercise 2

Interpret

Develop

We know 𝑣𝑦 = 𝑣 sin(𝜃) and 𝑣𝑥 = 𝑣 cos(𝜃).

The motion of the ball can be spilt in two components: horizontal, i.e. x-direction,
and vertical, tha is y-direction.

In the vertical direction gravity acts: 𝐹𝑦 = −𝑚𝑔. Thus the equation of motion in
the y-direction is: 𝑚𝑎𝑦 = 𝐹𝑦 =
−𝑚𝑔.𝑇ℎ𝑒𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑐𝑎𝑛𝑡ℎ𝑢𝑠𝑏𝑒𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑎𝑠s_y(t)=s_{y0}+v_{y0}t-1/2gt^2$.

In the horizontal direction no force is active, thus: 𝑚𝑎𝑥 = 0 → 𝑠𝑥(𝑡) = 𝑠𝑥0 + 𝑣𝑥0𝑡

The magnitude of the velocity of the ball hitting the ground can be expressed in
terms of 𝑣𝑥 and 𝑣𝑦 as 𝑣𝑒 = √𝑣2

𝑥 + 𝑣2
𝑦

Evaluate

We have as initial velocity: 𝑣𝑦0 = 𝑣 sin(𝜃) = 10 ∗ sin(30) = 5𝑚/𝑠
𝑣𝑥0 = 𝑣 cos(𝜃) = 10 ∗ cos(30) = 5

√
3𝑚/𝑠

Solving 𝑠𝑦(𝑡) = 𝑠𝑦0 + 𝑣𝑦0𝑡 − 1/2𝑔𝑡2 for 𝑠𝑦 = 0 with 𝑠𝑦0 = 𝐻  gives for the time
the ball is in the air:

𝑡𝑎𝑖𝑟 =
𝑣𝑦0

𝑔
+ √𝑣2

𝑦0

𝑔2 + 2𝐻
𝑔

= 2.77𝑠 (2.126)

Next, we realize that 𝑣𝑥 = 𝑐𝑜𝑛𝑠𝑡 = 𝑣𝑥0 as there is no force acting in the x-
direction. Thus the horizontal distance traveled is

$$\Delta x = v_{X0} t_{air} = 24.0 \text{m}

For the velocity when hitting the ground is (that is, its magnitude), we need both
the x and y-component:

𝑣𝑥 = 𝑣𝑥0 = 8.66𝑚/𝑠

𝑣𝑦 = 𝑣0𝑦 − 𝑔𝑡 → 𝑣𝑦(𝑡𝑎𝑖𝑟) = √𝑣2
𝑦0 + 2𝑔𝐻 = 14.9𝑚/𝑠

(2.127)

𝑣𝑔𝑟𝑜𝑢𝑛𝑑 = √𝑣2
𝑥 + 𝑣2

𝑦 = √𝑣2
𝑥0 + 𝑣2

𝑦 = 17.2𝑚/𝑠 (2.128)

Assess

The velocity upon impact is larger than the initial velocity. This makes sense. The
ball first travels upwards, then downwards and will pass 𝑠𝑦 = 𝐻  again on the
downward motion. Then it will further accelerate to the ground and thus have a
larger y-component of the velocity than at the start.58



Solution 2.75: Solution to Exercise 3

1. 𝑎 = 𝐹
𝑚  is constant

2. 𝑣(𝑡) = 𝑣0 + 𝑎𝑡
3. 𝑥(𝑡) = 𝑣0𝑡 + 1

2𝑎𝑡2

Solution 2.76: Solution to Exercise 4

1. 𝑎 = 𝐹
𝑚 = 𝐹0

𝑚 sin(2𝜋𝑓0𝑡) is not constant
2. 𝑣(𝑡) = 𝑣0 + 𝐹0

2𝜋𝑓0𝑚(1 − cos(2𝜋𝑓0𝑡))
3. 𝑥(𝑡) = 𝑣0𝑡 + 𝐹0

2𝜋𝑓0𝑚𝑡 − 𝐹0
4𝜋2𝑓2

0𝑚 sin 2𝜋𝑓0𝑡

Solution 2.77: Solution to Exercise 5

1.

2. Particle moves at constant velocity, thus path is a straight line:

⃗𝑟(𝑡) = ⃗𝑟0 + ⃗𝑣0𝑡 = 𝑥0 𝑖̂ + 𝑦0𝑗 + 𝑣0𝑥𝑡𝑖 + 𝑣0𝑦𝑡𝑗 (2.129)

At 𝑡 = 0 : ⃗𝑟(0) = 0̂𝑖 + 𝑦𝐴𝑗 → ⃗𝑟(0) = ⃗𝑟0 = 0̂𝑖 + 𝑦𝐴𝑗 → 𝑥0 = 0𝑎𝑛𝑑𝑦0 = 𝑦𝐴

At 𝑡 = 𝑡1:

⃗𝑟(𝑡1) = 𝑥𝐵 𝑖̂ + 0(̂)𝑗 →
⃗𝑟(𝑡1) = ⃗𝑟0 + ⃗𝑣0𝑡1

= (0 + 𝑣0𝑥𝑡1)̂𝑖 + (𝑦𝐴 + 𝑣0𝑦𝑡1)𝑗 →

𝑣0𝑥 = 𝑥𝐵
𝑡1

𝑎𝑛𝑑𝑣0𝑦 = −𝑦𝐴
𝑡1

(2.130)

3. Thus, we find ⃗𝑣 = 𝑥𝐵
𝑡1

𝑖̂ − 𝑦𝐴
𝑡1

𝑗
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Solution 2.79: Solution to Exercise 6

1.

2.

𝑥′ = cos 𝜃𝑥 + sin 𝜃𝑦 = 1
2
√

3𝑥 + 1
2
𝑦

𝑦′ = − sin 𝜃𝑥 + cos 𝜃𝑦 = −1
2
𝑥 + 1

2
√

3𝑦
(2.131)

2. Invert:

𝑥 = cos 𝜃𝑥′ − sin 𝜃𝑦′ = 1
2
√

3𝑥′ − 1
2
𝑦′

𝑦 = sin 𝜃𝑥′ + cos 𝜃𝑦′ = 1
2
𝑥′ + 1

2
√

3𝑦′
(2.132)

   velocity:

⃗𝑣 = 𝑣𝑥𝑥 + 𝑣𝑦𝑦

= 𝑣𝑥(cos 𝜃𝑥′ − sin 𝜃𝑦′) + 𝑣𝑦(sin 𝜃𝑥′ + cos 𝜃𝑦′)

= (𝑣𝑥 cos 𝜃 + 𝑣𝑦 sin 𝜃)𝑥′ + (−𝑣𝑥 sin 𝜃 + 𝑣𝑦 cos 𝜃)𝑦′
(2.133)

    from which we find

⃗𝑣 = (3
2
√

3 + 5
2
)𝑥′ + (−3

2
+ 5

2
√

3)𝑦′ (2.134)
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Solution 2.81: Solution to Exercise 7

𝑥′ = cos(2𝜋𝑓𝑡)𝑥 + sin(2𝜋𝑓𝑡)𝑦
𝑦′ = − sin(2𝜋𝑓𝑡)𝑥 + cos(2𝜋𝑓𝑡)𝑦

(2.135)

The unit vectors of S’ rotate with a frequency 𝑓  with respect to the unit vectors of S.
This means, that the coordinate system of S’ rotates: the rotation angle is a function of
time, i.e. 𝜃(𝑡) = 2𝜋𝑓𝑡

From the figure we see, that the coordinates of a point P, (𝑥𝑝, 𝑦𝑝) according to S, are
related to those used by S’, (𝑥′𝑝, 𝑦′𝑝) via:

𝑥𝑝 = 𝑂𝑃 cos(𝛼 + 𝜃) = 𝑂𝑃(cos 𝛼 cos 𝜃 − sin 𝛼 sin 𝜃) = 𝑥′𝑝 cos 𝜃 − 𝑦′𝑝 sin 𝜃

𝑦𝑝 = 𝑂𝑃 sin(𝛼 + 𝜃) = 𝑂𝑃(cos 𝛼 sin 𝜃 + sin 𝛼 cos 𝜃) = 𝑥′𝑝 sin 𝜃 + 𝑦′𝑝 cos 𝜃
(2.136)

or written as the coordinate transformation:

𝑥 = 𝑥′ cos 𝜃 − 𝑦′ sin 𝜃
𝑦 = 𝑥′ sin 𝜃 + 𝑦′ cos 𝜃

(2.137)

with its inverse

𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃
𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃

(2.138)

Note that in this case 𝜃 = 2𝜋𝑓𝑡, that is: it is a function of 𝑡.

a) From the above relation we find that the point (1,0) in S will be denoted by S’ as
(𝑥′(𝑡), 𝑦′(𝑡)) = (cos(2𝜋𝑓𝑡), − sin(2𝜋𝑓𝑡))

b) the velocity of the point (1,0) in S is according to S of course zero: 𝑑𝑥
𝑑𝑡 = 0, 𝑑𝑦

𝑑𝑡 = 0 S’
will say:

𝑥′(𝑡) = cos(2𝜋𝑓𝑡) → 𝑑𝑥′
𝑑𝑡

= −2𝜋𝑓 sin(2𝜋𝑓𝑡)

𝑦′(𝑡) = − sin(2𝜋𝑓𝑡) → 𝑑𝑦′
𝑑𝑡

= 2𝜋𝑓 cos(2𝜋𝑓𝑡)
(2.139)
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Solution 2.83: Solution to Exercise 8

1.

2. Since ⃗𝑣0 and ⃗𝐹  are parallel, the particle will not deviate from the line x=y.
Hence, we are dealing with a 1-dimensional problem. The original coordinate
system, (𝑥, 𝑦), is not wrong: it is just not handy as it makes the problem look
like 2D. Thus, we change our coordinate system, such that the new 𝑥-axis
coincides with the original x=y line.

3. N2: 𝑚𝑑𝑣
𝑑𝑡 = −𝑏𝑣 with initial conditions: 𝑡 = 0 → 𝑥 = 0 and 𝑡 = 0 → 𝑣 = 𝑣0

4. 𝑑𝑣
𝑑𝑡 − 𝑏

𝑚𝑣 = 0 → 𝑣 = 𝐴𝑒− 𝑏
𝑚𝑡 initial condition: 𝑡 = 0 → 𝑣 = 𝑣0 ⇒ 𝐴 = 𝑣0 Thus:

𝑣(𝑡) = 𝑣0𝑒− 𝑏
𝑚𝑡

5. for 𝑡 → ∞ : 𝑣 → 0. The particle comes to rest and then, obviously, the friction
force is zero.
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Solution 2.85: Solution to Exercise 9

1.

2. We expect that the area, 𝐴, under the trajectory of the ball is a function of 𝑣, 𝑔,
and 𝜃. In a dimensional analysis we write this as ‘product of powers’:

𝐴 = 𝑣𝑎 ⋅ 𝑔𝑏 ⋅ 𝜃𝑐 (2.140)

and we make this expression dimensional correct. (Note: we don’t mean that the final
outcome of a full analysis is a product of powers, it can be any function but the units
should be related in the right way and that is what this ‘trick’ with powers ensures.)

The area has units m2, velocity m/s, g m/s2 and 𝜃 is dimensionless (radians don’t
count as a dimension or unit). Thus:

𝑚 : 2 = 𝑎 + 𝑏
𝑠 : 0 = −𝑎 − 2𝑏

(2.141)

This yields: 𝑎 = 4, 𝑏 = −2. Thus on dimensional grounds we may expect: 𝐴 ∼ 𝑣4

𝑔2 .

3. In the x-direction: no forces, hence 𝑚𝑣𝑥
𝑑𝑡 = 0 → 𝑥(𝑡) = 𝑣 cos 𝜃𝑡

In the y-direction: 𝑚𝑑𝑣𝑦
𝑑𝑡 = −𝑚𝑔 → 𝑦(𝑡) = 𝑣 sin 𝜃𝑡 − 1

2𝑔𝑡2. Where we have used the
initial conditions: 𝑥(𝑜) = 0, 𝑦(0) = 0, 𝑣𝑥(0) = 𝑣 cos 𝜃, 𝑣𝑦(0) = 𝑣 sin 𝜃

4. Total time in the air: 𝑣𝑦(𝑡∗) = 0 → 𝑡∗ = 2𝑣
𝑔 sin 𝜃

5+6. Evaluate the area under the trajectory:

𝐴 = ∫
𝑥𝑚𝑎𝑥

0
𝑦𝑑𝑥

= ∫
𝑡∗

0
(𝑣 sin 𝜃𝑡 − 1

2
𝑔𝑡2)𝑣 cos 𝜃𝑑𝑡

= 𝑣2 sin 𝜃 cos 𝜃1
2
(𝑡∗)2 − /𝑓𝑟𝑎𝑐16𝑔𝑣 cos 𝜃(𝑡∗)3

= 2
3

𝑣4

𝑔2 cos 𝜃 sin3 𝜃

(2.142)

7. We maximize the function 𝑓(𝜃) = cos 𝜃 sin3 𝜃:

𝑑𝑓
𝑑𝜃

= sin2 𝜃(− sin2 𝜃 + 3 cos2 𝜃) (2.143)

𝑑𝑓
𝑑𝜃

= 0 → sin 𝜃 = 0𝑜𝑟 sin2 𝜃 = 3 cos2 𝜃 (2.144)

The first solution give a minimum for the area (𝐴 = 0). So we need the second
solution:

sin2 𝜃
cos2 𝜃

= tan2 𝜃 = 3 → tan 𝜃 =
√

3 → 𝜃 = 𝜋
3

(2.145)63



Solution 2.87: Solution to Exercise 10

Interpret

We start with a sketch.

This is a 1-dimensional problem. We will use 𝑟 as the coordinate. Moreover, it is a
problem involving two particles, that both can move. This makes it more difficult
than 1-dimensional cases with only one particle.

Develop

We have to set up two equations of motion, one for particle 1 with mass 𝑚 and
position 𝑟1 and one for particle 2 with mass 𝑚/4 and position 𝑟2. When doing so,
we should realize that the mutual force obeys Newton’s third law: 𝐹12 = −𝐹21

𝑚𝑑𝑣1
𝑑𝑡

= 𝑎(𝑟2 − 𝑟1)

𝑚
4

𝑑𝑣2
𝑑𝑡

= −𝑎(𝑟2 − 𝑟1)
(2.146)

We see that the two equations are coupled: we can’t solve one without information
from the other.

Evaluate

So, how do we proceed? First, let’s think about the question. We are not asked to
solve the equation of motion and find the trajectory. What we need to find is the
position of the collision.

From the two equation of motion we can find important information about the
velocities of both particles. Just add to two equations:

𝑚𝑑𝑣1
𝑑𝑡

+ 𝑚
4

𝑑𝑣2
𝑑𝑡

= 0 → 𝑑𝑣1
𝑑𝑡

= −1
4

𝑑𝑣2
𝑑𝑡

(2.147)

Since both particles start rest, we find from the last equation: 𝑣1 = −1
4𝑣2 at any

time. Thus particle 2 will travel 4 times a distance than particle 1 in the same time
interval. Consequently: if particle 1 has moved 1cm, particle 2 has moved 4cm.
Thus the particles (originally separated by 5cm) will collide at 𝑟 = 1cm.

Assess

It makes sense that the heavy particle has traveled less than the light one: they
both feel at any moment the same force (apart from a sign). The light particle will
accelerate faster than the heavy one. Moreover, they should collide somewhere on
the line element originally separating them as they are attracted to each other.

We found both these elements in our solution.
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Exercise 2.89: Who is strongest? 🌶

Who is strongest? Two strong boys try to keep a rope straight by each pulling hard at
one end. A not so strong third person is pulling in the middle of the rope, but at an
angle of 90° to the rope. The two strong boys have the task to keep the deviation of
the rope to a small value, set by you.

How does the force and the angle depends on the force exerted by the girl?

Figure 2.90:  Picture taken from Show the Physics

Exercise 2.91: Dropping a stone from a church tower 🌶

You drop a stone from a height of 50m the tower of the church. Calculate the velocity
of the stone when it hits the ground (ignore friction). In the video you will see on the
left a quick and dirty solution, NOT using IDEA. The right hand side uses IDEA and
Newton’s 2𝑛𝑑 law.

Figure 2.92:  The worked out exercise
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Exercise 2.93: Sliding down a slope 🌶

Two point particles slide down a slope: one feels friction the other doesn’t. Can you
analyse the situation and understand the graphs?

Exercise 2.94: 🌶

Below are three forces and their resultant (𝑣, 𝑡)- and (𝑠, 𝑡)-diagrams. What kind of
forces are acting?

Exercise 2.95: 🌶

A mass 𝑚 = 1kg (the red one in the drawing) is attached to a massless string. The
string can move freely over a massless pulley. At the other end of the string a variable
mass 𝑀  (the grey one) is hanging. At 𝑡 = 0 mass 𝑚 is released, while the string is
stretched to its full length.

The graph on the right side of the screen shows the velocity of 𝑚 as a function of
time.

• ‘Play’ with the acceleration and mass 𝑀 , predict every time first what will
happen to the motion.

• Describe the motion of 𝑚 and 𝑀 .
• Write down Newton’s equation of motion for 𝑚 and for 𝑀 .

Exercise 2.96: 🌶 🌶 🌶

A point particle (mass 𝑚) is from position 𝑧 = 0 shot with a velocity 𝑣0 straight
upwards into the air. On this particle only gravity acts, i.e. friction with the air can be
ignored. The acceleration of gravity, 𝑔, may be taken as a constant.

The following questions should be answered.

• What is the maximum height that the particle reaches?
• How long doe it take to reach that highest point?

Solve this exercise using IDEA.

• Sketch the situation and draw the relevant quantities.
• Reason that this exercise can be solved using ⃗𝐹 = 𝑚 ⃗𝑎 (or 𝑑 ⃗𝑝/𝑑𝑡 = ⃗𝐹 ).
• Formulate the equation of motion (N2) for m.
• Classify what kind of mathematical equation this is and provide initial or

boundary conditions that are needed to solve the equation.
• Solve the equation of motion and answer the two questions.
• Check your math and the result for dimensional correctness. Inspect the limit:

𝐹𝑧𝑤 → 0.
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Exercise 2.97: Acceleration of Gravity 🌶 🌶

• Find an object that you can safely drop from some height.
• Drop the object from any (or several heights) and measure using a stop watch or

you mobile the time from dropping to hitting the ground.
• Measure the dropping height.

Find from these data the value of gravity’s acceleration constant.

Don’t forget to first make an analysis of this experiment in terms of a physical model
and make clear what your assumptions are.

Tip

Think about the effect of air resistance: is dropping from a small, a medium or a
high height best? Any arguments?

Exercise 2.98: Use numerical analysis to assess influence of air friction 🌶 🌶 🌶

If you want to learn also how to use numerical methods …

Try using an air drag force: 𝐹𝑑𝑟𝑎𝑔 = −𝐴⟂𝐶𝐷
1
2𝜌𝑎𝑖𝑟𝑣2. With 𝐴⟂ the cross-sectional

area of your object perpendicular to the velocity vector and 𝐶𝐷 ≈ 1 the drag
coefficient (in real life it is actually a function of the velocity). 𝜌𝑎𝑖𝑟 is the density of air
which is about 1.2𝑘𝑔/𝑚3.

Write a computer program (e.g. in python) that calculates the motion of your object.
See Solution with Python how you could do that.
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Exercise 2.99: Forces on your bike 🌶

Figure 2.100:  Riding a bicycle. Adapted from InjuryMap, from Wikimedia Commons,
licensed under CC BY-SA 4.0.

On a bicycle you will have to apply a force to the pedals to move forward, right? What
force actually moves you forward, where is it located and who/what is providing that
force?

• Make sketch and draw the relevant force. Give the force that actually propels you
a different color.

• Think for a minute about the nature of this force: are you surprised?

N.B. Consider while thinking about this problem: what would happen if you were
biking on an extremely slippery floor?

Solution 2.101: Solution to Exercise 19

When you push with your foot on the pedal, that force is transferred to the chain of
your bike. That chain exerts a force on the gear of your bike’s rear wheel, trying to get
it to rotate. Your wheel touches the ground and, because of the force on the gear, the
wheel exerts a force in the ground, trying to push the ground backwards. Due to
action=-reaction, the ground exerts a forward force on your wheel. So actually, biking
means “making the ground push you forward”!
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Exercise 2.103: Getting off the boat 🌶

You are stepping from a boat onto the shore. Use Newton’s laws to describe why you
will end up in the water.

N.B. A calculation is not required, but focus on the physics and describe in words why
you didn’t make it to the jetty.

Solution 2.105: Solution to Exercise 20

When you try to step on the jetty, a force needs to be exerted on you, otherwise you
can’t move forward. The way you achieve that: you push with your back foot on the
boat. And as a result of Newton 3, the boat will push back, but the force from the boat
on you is forward directed. That is exactly what you need!

However, while you push, the boat will move backwards due to the force you exert on
it. Consequently, your point of contact with the boat shifts away from the jetty. Either
you let the boat go and no force from the boat is acting on you. Now gravity will do
its work and if your forward velocity is not sufficient, you will not reach the jetty. Or
your foot will try to follow the boat and that requires a force to the wrong direction
acting on you.

Pushing harder seems an option: your forward velocity might increase more.
However, the boat will also be pushed harder and moves quicker away from you.
Consequently, the time interval of contact with the boat decreases. Thus, with Newton
2: dp = Fdt your increase in velocity due to the larger force might be compensated by
a smaller duration that the force can do so. And you may still end up in the water.
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Exercise 2.106: Newton’s Laws 🌶

Figure 2.107:  Stamp designs © Royal Mail Group Ltd[^1].

Close this book (or don’t peak at it ;-)) and write down Newton’s laws. Explain in
words the meaning of each of the laws. Try to come up with several, different ways of
describing what is in these equations.
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2.3 Work and Energy

2.3.1 Work
Work and energy are two important concepts. Work is the transfer of energy that occurs
when a force is applied to an object and causes displacement in the direction of that force,
calculated as ‘force times path’. However, we need a formal definition:

if a point particle moves from ⃗𝑟 to ⃗𝑟 + 𝑑 ⃗𝑟 and during this interval a force ⃗𝐹  acts on the
particle, then this force has performed an amount of work equal to:

𝑑𝑊 = ⃗𝐹 ⋅ 𝑑 ⃗𝑟 (2.148)

Figure 2.108:  Path of a particle.

Note that this an inner product between two vectors, resulting in a scalar . In other words,
work is a number, not a vector. It has no direction. That is one of the advantages over
force.

𝑑𝑊 = ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = 𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 + 𝐹𝑧𝑑𝑧 (2.149)

Work done on 𝑚 by 𝐹  during motion from 1 to 2 over a prescribed trajectory:

𝑊12 = ∫
2

1

⃗𝐹 ⋅ 𝑑 ⃗𝑟 (2.150)

Keep in mind: in general the work depends on the starting point 1, the end point 2 and on
the trajectory. Different trajectories from 1 to 2 may lead to different amounts of work.

Tip

See also the chapter in the linear algebra book on the inner product

2.3.2 Kinetic Energy
Kinetic energy is defined and derived using the definition of work and Newton’s 2𝑛𝑑 Law.
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The following holds: if work is done on a particle, then its kinetic energy must change.
And vice versa: if the kinetic energy of an object changes, then work must have been
done on that particle. The following derivation shows this.

𝑊12 = ∫
2

1

⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∫
2

1

⃗𝐹 ⋅ 𝑑 ⃗𝑟
𝑑𝑡

𝑑𝑡 = ∫
2

1

⃗𝐹 ⋅ ⃗𝑣𝑑𝑡

= ∫
2

1
𝑚𝑑 ⃗𝑣

𝑑𝑡
⋅ ⃗𝑣𝑑𝑡 = 𝑚 ∫

2

1
⃗𝑣 ⋅ 𝑑 ⃗𝑣 = 𝑚[1

2 ⃗𝑣2]
2

1

= 1
2
𝑚 ⃗𝑣2

2 − 1
2
𝑚 ⃗𝑣2

1

(2.151)

It is from the above that we indicate 12𝑚 ⃗𝑣2 as kinetic energy. It is important to realize that
the concept of kinetic energy does not bring anything that is not contained in N2 to the
table. But it does give a new perspective: kinetic energy can only be gained or lost if a
force performs work on the particle. And vice versa: if a force performs work on a
particle, the particle will change its kinetic energy.

Obviously, if more than one force acts, the net work done on the particle determines the
change in kinetic energy. It is perfectly possible that force 1 adds an amount 𝑊  to the
particle, whereas at the same time force 2 will take out an amount −𝑊 . This is the case
for a particle that moves under the influence of two forces that cancel each other: ⃗𝐹1 =
− ⃗𝐹2. From Newton 2, we immediately infer that if the two forces cancel each other, then
the particle will move with a constant velocity. Hence, its kinetic energy stays constant.
This is completely in line with the fact that in this case the net work done on the particle
is zero:

𝑊1 + 𝑊2 = ∫
2

1

⃗𝐹1 ⋅ 𝑑 ⃗𝑟 + ∫
2

1

⃗𝐹2 ⋅ 𝑑 ⃗𝑟 = ∫
2

1

⃗𝐹1 ⋅ 𝑑 ⃗𝑟 − ∫
2

1

⃗𝐹1 ⋅ 𝑑 ⃗𝑟 = 0 (2.152)

2.3.3 Worked Examples

Reminder of path/line integral from Analysis

As long as the path can be split along coordinate axis the separation above is a good
recipe. If that is not the case, then we need to turn back to the way how things have
been introduced in the Analysis class. We need to make a 1D parameterization of the
path.

Line integral of a vector valued function ⃗𝐹 (𝑥, 𝑦, 𝑧) : ℝ3 → ℝ3 over a curve cal 𝐶 is
given as

∫
cal 𝐶

⃗𝐹 (𝑥, 𝑦, 𝑧) ⋅ 𝑑 ⃗𝑟 = ∫
𝑏

𝑎

⃗𝐹 ( ⃗𝑟(𝜏)) ⋅ 𝑑 ⃗𝑟(𝜏)
𝑑𝜏

𝑑𝜏 (2.158)

We integrate in the definition of the work from point 1 to 2 over an implicitly given
path. To compute this actually, you need to parameterize the path by ⃗𝑟(𝜏) =
(𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏)). The integration variable 𝜏  tells you where you are on the path, 𝜏 ∈

Exercise 2.109: Carrying a weight

You carry a heavy backpack 𝑚 = 20kg from Delft to Rotterdam (20km). What is the
work that you have done against the gravitational force?

72



Solution 2.110: Solution to Exercise 1

The answer is, of course, zero! That is because the path (from Delft to Rotterdam) is
perpendicular to the gravitational force. Therefore the inner product 𝐹𝑔 ⋅ 𝑑 ⃗𝑟 = 0 over
the whole way. Let us look at it more formally, this will help us when things get more
complicated later.

The force is 𝐹𝑔(𝑥, 𝑦, 𝑧) = (0, 0, −𝑚𝑔) = −𝑚𝑔𝑧 and we choose our coordinate system
such that the path be along the 𝑥-axis, the 𝑦-coordinate is zero and we the backpack is
at height 𝑧 = 1 m.

𝑊𝑔 = ∫
𝑅𝑜𝑡𝑡

𝐷𝑒𝑙𝑓𝑡
𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 + 𝐹𝑧𝑑𝑧 = ∫ 𝐹𝑥𝑑𝑥 |𝑦=0,𝑧=1 = ∫ 0 𝑑𝑥 = 0 (2.153)

So gravity has not performed work on your backpack. Similarly, you have exercised a
force ⃗𝐹𝑁  on the backpack. As the backpack doesn’t change its vertical coordinate, we
know ⃗𝐹𝑁 + ⃗𝐹𝑔 = 0. And immediately, we see:

𝑊𝑁 = ∫
𝑅𝑜𝑡𝑡

𝐷𝑒𝑙𝑓𝑡
𝐹𝑁𝑥𝑑𝑥 + 𝐹𝑁𝑦𝑑𝑦 + 𝐹𝑁𝑧𝑑𝑧 = ∫ 𝐹𝑥𝑑𝑥 |𝑦=0,𝑧=1 = ∫ 0 𝑑𝑥 = 0(2.154)

You didn’t perform any work either. This may feel strange or even wrong. After all,
you will probably be pretty tired after the walk. However, that is due to the internal
working of our muscles and body. In order to sustain the force ⃗𝐹𝑁  humans do use
energy: work is done in their muscles. But from a physics point of view: no work is
done on the backpack.

[𝑎, 𝑏] ∈ ℝ. The derivative of ⃗𝑟 with respect to 𝜏  gives the tangent vector to the curve,
the “speed” of walking along the curve. In the analysis class you used ⃗𝑣(𝜏) ≡ 𝑑 ⃗𝑟(𝜏)

𝑑𝜏  for
the speed. The value of the line integral is independent of the chosen
parameterization. However, it changes sign when reversing the integration
boundaries.

Example: Another path

Exercise 2.111: Compressing a spring⁵

You’re compressing an uncompressed spring with spring constant 𝑘 over a distance 𝑥.
How much work do you need to do?

Solution 2.112: Solution to Exercise 2

𝑊 = ∫
𝑥2

𝑥1

𝐹d𝑥 = ∫
𝑥

0
𝑘𝑥d𝑥 = 1

2
𝑘𝑥2 (2.155)

⁵Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)
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Exercise 2.113: Work in a force field

Now we consider a force field ⃗𝐹 (𝑥, 𝑦) = (−𝑦, 𝑥2) = −𝑦𝑥 + 𝑥2𝑦. We compute the
work done over a path from the origin (0, 0) to (1, 0) and then to (1, 1) first along the
𝑥-axis and then parallel to the 𝑦-axis.

Now we integrate from (0, 0) → (1, 1) but along the diagonal. A parameterization of
this path is ⃗𝑟(𝜏) = (0, 0) + (1, 1)𝜏 = (𝜏, 𝜏), 𝜏 ∈ [0, 1]. The derivative is 𝑑 ⃗𝑟(𝜏)

𝑑𝜏 = (1, 1).
Therefore we can write the work of ⃗𝐹 (𝑥, 𝑦) = −𝑦𝑥 + 𝑥2𝑦 along the diagonal as

∫
1

0

⃗𝐹 (𝜏 , 𝜏) ⋅ (1, 1) 𝑑𝜏 = ∫
1

0
(−𝜏, 𝜏2) ⋅ (1, 1) 𝑑𝜏 =

∫
1

0
(−𝜏 + 𝜏2) 𝑑𝜏 = −1

6

(2.159)

Solution 2.115: Solution to Exercise 3

We can split up the integral in these two parts as the direction in both parts is
constant, therefore the inner product can be separated out.

𝑊 =

=

=

=

∫(1,0)
(0,0)

⃗𝐹 ⋅ 𝑑 ⃗𝑟 + ∫(1,1)
(1,0)

⃗𝐹 ⋅ 𝑑 ⃗𝑟

∫(1,0)
(0,0)

𝐹𝑥𝑑𝑥 |𝑦=0 + ∫(1,1)
(1,0)

𝐹𝑦𝑑𝑦 |𝑥=1

∫(𝑥=1)
(𝑥=0)

−𝑦 𝑑𝑥 |𝑦=0 + ∫(𝑦=1)
(𝑦=0)

𝑥2 𝑑𝑦 |𝑥=1

−𝑦𝑥 |𝑥=1
𝑥=0 |𝑦=0 + 𝑥2𝑦 |𝑦=1

𝑦=0 |𝑥=1 = 1

(2.156)

Try to integrate the force field yourself along a different path (0, 0) → (0, 1) → (1, 1)
to the same end point.

𝑊 =

=
=

∫𝑦=1
𝑦=0

𝐹𝑦 𝑑𝑦 |𝑥=0 + ∫𝑥=1
𝑥=0

𝐹𝑥 𝑑𝑥 |𝑦=1

∫𝑦=1
𝑦=0

𝑥2 𝑑𝑦 |𝑥=0 + ∫𝑥=1
𝑥=0

−𝑦 𝑑𝑥 |𝑦=1

−1 + 0 = −1

(2.157)

The work done is not the same over this path. This is already obvious from the graph
showing the path and the force field: the second path clearly moves against the force,
where the first is moving with direction of the force.
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Integration of the same force ⃗𝐹 (𝑥, 𝑦) = −𝑦𝑥 + 𝑥2𝑦 from (0, 0) → (1, 1) but along a
normal parabola. A parameterization of the path is ⃗𝑟(𝜏) = (0, 0) + (𝜏, 𝜏2), 𝜏 ∈ [0, 1]
and the derivative is 𝑑 ⃗𝑟

𝑑𝜏 = (1, 2𝜏). The work then is

∫
1

0

⃗𝐹 (𝜏, 𝜏2) ⋅ (1, 2𝜏) 𝑑𝜏 =

∫
1

0
(−𝜏2, 𝜏2) ⋅ (1, 2𝜏) 𝑑𝜏 =

∫
1

0
(−𝜏2 + 2𝜏3) 𝑑𝜏 = 1

6

(2.160)

2.3.4 Gravitational potential energy
Let’s consider an object close to the surface of any planet, where the acceleration due to
gravity can be described by 𝐹𝑔 = −𝑚𝑔. Raising the object to a height 𝐻  requires us to do
work: we will have to apply a force 𝐹 = +𝑚𝑔 to the object to lift it to position 𝐻 . Thus,
with two forces acting - each doing work on the object we get:

𝑊𝑔 = ∫
𝐻

0
𝐹𝑔𝑑𝑥 = ∫

𝐻

0
−𝑚𝑔𝑑𝑥 = −𝑚𝑔𝐻

𝑊+ = ∫
𝐻

0
−𝐹𝑔𝑑𝑥 = ∫

𝐻

0
𝑚𝑔𝑑𝑥 = 𝑚𝑔𝐻

(2.161)

The net effect is of course 𝑊𝑛𝑒𝑡 = 0 as the object started without kinetic energy and ends
without kinetic energy, thus we knew in advance 0 = Δ𝐸𝑘𝑖𝑛 = 𝑊𝑔 + 𝑊+

We can also take a slightly different view on this. Suppose we only concentrate on the
work done by gravity: 𝑊𝑔 = −𝑚𝑔𝐻 . Note that there is a minus sign, the gravitational
force works in the opposite direction of the movement of the object. As energy is a
conservative quantity, someone or something has supplied the object with some ‘gained’
energy. We call this potential energy, more particular in this case gravitational potential
energy.

Why is it called ‘potential’? When the object is released from that height 𝐻 , this
gravitational potential energy is converted to kinetic energy. The gravitational force does
work on the object:

𝑊 = ∫
0

𝐻
𝐹𝑑𝑥 = ∫

0

𝐻
𝑚𝑔𝑑𝑥 = 𝑚𝑔𝐻 = Δ𝐸𝑘𝑖𝑛 (2.162)

From this, it follow that the object will reach a velocity of 𝑣 =
√

2𝑔𝐻 . This is an example
of a situation where an object looses potential energy and gains kinetic energy.

interactive(children=(FloatSlider(value=9.81, description='g (m/s²)',
max=15.0, min=1.5), IntSlider(value=1, d…

Exercise 2.116: Potential & kinetic energy

Proof that the velocity of an object released from a height 𝐻  will reach the velocity
𝑣 =

√
2𝑔𝐻 .
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Exercise 2.117: 

A point particle of mass 𝑚 = 1kg is at 𝑡 = 0 at position 𝑥 = 0. It has initial velocity
𝑣0. From 𝑡 = 0 to 𝑡𝑠𝑡𝑜𝑝 = 2s it is under the influence of a constant force 𝐹 . This is a
1D problem.

The top graph show the position of the particle. The bottom graph shows the Work
done on the particle by the force and the kinetic energy of the particle.

Analyse this situation and calculate the work done by the force at any time. Is the
work done in this case always sufficient to account for the change in kinetic energy?
What does it mean if the work is positive or negative?

Exercise 2.118: 

Use the Python app below, and answer the following questions:

• does the acceleration double when the mass of the falling box doubles?
• the position time diagram is made using kinematics, how would the code look

like when based on energy conservation?
• how would you include friction in the code?

<function __main__.run_animation(g=9.81, M=1)>

2.3.5 Conservative force
As we saw, work done on 𝑚 by 𝐹  during motion from 1 to 2 over a prescribed trajectory,
is defined as:

𝑊12 = ∫
2

1

⃗𝐹 ⋅ 𝑑 ⃗𝑟 (2.163)

In general, the amount of work depends on the path followed. That is, the work done
when going from ⃗𝑟1 to ⃗𝑟2 over the red path in the figure below, will be different when
going from ⃗𝑟1 to ⃗𝑟2 over the blue path. Work depends on the specific trajectory followed.

Exercise 2.119: 

Look at the following roller coaster app.

Change the various graph settings (what is on the x/y axis). Change the starting
position of the ball, and try to change the path.

Can you make sense of the motion and the graphs?
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Figure 2.120:  Two different paths.

However, there is a certain class of forces for which the path does not matter, only the
start and end point do. These forces are called conservative forces. As a consequence, the
work done by a conservative force over a closed path, i.e start and end are the same, is
always zero. No matter which closed path is taken.

𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑓𝑜𝑟𝑐𝑒 ⇔ ∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = 0𝑓𝑜𝑟𝐴𝐿𝐿𝑐𝑙𝑜𝑠𝑒𝑑𝑝𝑎𝑡ℎ𝑠 (2.164)

2.3.5.1 Stokes’ Theorem
It was George Stokes who proved an important theorem, that we will use to turn the
concept of conservative forces into a new and important concept.

Figure 2.121:  Sir George Stokes (1819-1903). From Wikimedia Commons, public domain.

His theorem reads as:

∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∬ ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ (2.165)

In words: the integral of the force over a closed path equals the surface integral of the curl
of that force. The surface being ‘cut out’ by the close path. The term ∇⃗ × ⃗𝐹  is called the
curl of 𝐹 :, which is a vector. The meaning of the curl and some words on the theorem are
given below.
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Intermezzo: intuitive proof of Stokes’ Theorem

Consider a closed curve  in the -plane. We would like to calculate the work done
when going around this curve. In other words: what is  if we move along this curve?
We can visualize what we need to do: we cut the curve in small part; compute  for
each part (i.e. the red, green, blue, etc. in  and sum these to get the total along the
curve. If we make the parts infinitesimally small, we go from a (Riemann) sum to an
integral.Closed path on a grid.However, we are going to compute much more: take a
look at . We have put a grid in the -plane over a closed curve . Hence, the interior of
our curve is full of squares. We are not only computing the parts along the curve, but
also along the sides of alle curves. This will sound like way too much work, but we
will see that it actually is a very good idea.See : we calculate  counter clockwise for
the green square. Than we have at least the green part of our  done in the right
direction. Hence, we compute  along the right side of the green square. We do that
from bottom to top as we go counter clockwise along the green square. Let’s call
that .Then we move to the blue square and repeat in counter clockwise direction our
calculation. But this means that we compute along the left side of blue the square
from top to bottom. We will call this .Next, we will add all contributions. Thus we
get . But these two cancel each other as they are exactly the same but done in
opposite directions. Thus if we use that  for any integration, it becomes obvious
that  .Note that this will happen for all side of the squares that are in the interior of
our curve. Thus, the integral over all squares is exactly the integral along the curve .It
seems, we do a lot of work for nothing. But there is another way of looking at the
path-integrals along the squares. If we make the square small enough, the calculation
along one square can be approximated:

Example: Work done in a vectorfield

Suppose we need to calculate the integral of the vectorfield ⃗𝐹 (𝑥, 𝑦) = 𝑦𝑥 − 𝑥𝑦 over
the closed curve formed by a square from (0, 0) to (1, 0), (1, 1), (0, 1) and back to
(0, 0).

Figure 2.122:  Integrating along the unit square.

We go counter clockwise.
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∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∫
1

𝑥=0
𝐹𝑥(𝑥, 𝑦 = 0)𝑑𝑥 + ∫

1

𝑦=0
𝐹𝑦(𝑥 = 1, 𝑦)𝑑𝑦 +

+ ∫
0

𝑥=1
𝐹𝑥(𝑥, 𝑦 = 1)𝑑𝑥 + ∫

0

𝑦=1
𝐹𝑦(𝑥 = 0, 𝑦)𝑑𝑦

= ∫
10

0
𝑑𝑥 + ∫

1

0
−1𝑑𝑦 + ∫

01

1
𝑑𝑥 + ∫

0

1
−0𝑑𝑥

= 0 − [𝑦]10 + [𝑥]01 − 0
= −2

(2.166)

Now we try this using Stokes’ Theorem:

∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∬ ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ (2.167)

We first calculate ∇⃗ × ⃗𝐹 :

∇⃗ × ⃗𝐹 =

|
|
|
| 𝑥

𝜕
𝜕𝑥
𝐹𝑥

𝑦
𝜕
𝜕𝑦
𝐹𝑦

𝑧
𝜕
𝜕𝑧
𝐹𝑧|

|
|
|
=

|
|
|
| 𝑥

𝜕
𝜕𝑥
𝑦

𝑦
𝜕
𝜕𝑦
−𝑥

𝑧
𝜕
𝜕𝑧
0 |

|
|
|
= (𝜕(−𝑥)

𝜕𝑥
− 𝜕(𝑦)

𝜕𝑦
)𝑧 = −2𝑧 (2.168)

Thus, in this example ∇⃗ × ⃗𝐹  has only a 𝑧-component.

An elementary surface element of the square is: 𝑑𝜎⃗ = 𝑑𝑥𝑑𝑦𝑧. This also has only a 𝑧-
component. Note that it points in the positive 𝑧-direction. This is a consequence of the
counter clockwise direction that we use to go along the square.

According to Stokes Theorem, we this find:

∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∬ ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ = ∫
1

𝑥=0
∫

1

𝑦=0
(−2)𝑑𝑥𝑑𝑦 = −2 (2.169)

Indeed, we find the same outcome.

2.3.5.2 Conservative force and ∇⃗ × ⃗𝐹
For a conservative force the integral over the closed path is zero for any closed path.
Consequently, ∇⃗ × ⃗𝐹 = 0 everywhere. How do we know this? Suppose ∇⃗ × ⃗𝐹 ≠ 0 at
some point in space. Then, since we deal with continuous differentiable vector fields, in
the close vicinity of this point, it must also be non-zero. Without loss of generality, we
can assume that in that region ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ > 0. Next, we draw a closed curve around this
point, in this region. We now calculate the ∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 along this curve. That is, we invoke
Stokes Theorem. But we know that ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ > 0 on the surface formed by the closed
curve. Consequently, the outcome of the surface integral is non-zero. But that is a
contradiction as we started with a conservative force and thus the integral should have
been zero.
The only way out, is that ∇⃗ × ⃗𝐹 = 0 everywhere.

Thus we have:

𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑓𝑜𝑟𝑐𝑒 ⇔ ∇⃗ × ⃗𝐹 = 0𝑒𝑣𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒 (2.170)
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2.3.6 Potential Energy
This function 𝑉  is called the potential energy or the potential for short and has a direct
connection to the work. A direct consequence of the above is:

if ∇⃗ × ⃗𝐹 = 0 everywhere, a function 𝑉 ( ⃗𝑟) exists such that ⃗𝐹 = −∇⃗𝑉

𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑓𝑜𝑟𝑐𝑒 ⇔ ∇⃗ × ⃗𝐹 = 0𝑒𝑣𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒
⇕

⃗𝐹 = −∇⃗𝑉 ⇔ 𝑉 ( ⃗𝑟) = − ∫
𝑟𝑒𝑓

⃗𝐹 ⋅ 𝑑 ⃗𝑟
(2.171)

where in the last integral, the lower limit is taken from some, self picked, reference point.
The upper limit is the position ⃗𝑟.

Next to its direct connection to work, the potential is also connected to kinetic energy.

𝐸𝑘𝑖𝑛,2 − 𝐸𝑘𝑖𝑛,1 = 𝑊12 = ∫
2

1

⃗𝐹 ⋅ 𝑑 ⃗𝑟 = 𝑉 ( ⃗𝑟2) − 𝑉 ( ⃗𝑟1) (2.172)

or rewritten:

𝐸𝑘𝑖𝑛,1 + 𝑉 ( ⃗𝑟1) = 𝐸𝑘𝑖𝑛,2 + 𝑉 ( ⃗𝑟2) (2.173)

In words: for a conservative force, the sum of kinetic and potential energy stays constant.

2.3.6.1 Energy versus Newton’s Second Law
We, starting from Newton’s Laws, arrived at an energy formulation for physical problems.
Question: can we also go back? That is: suppose we would start with formulating the
energy rule for a physical problem, can we then back out the equation of motion?
Answer: yes, we can!

It goes as follows. Take a system that can be completely described by its kinetic plus
potential energy. Then: take the time-derivative and simplify, we will do it for a 1-
dimensional case first.

1
2
𝑚𝑣2 + 𝑉 (𝑥) = 𝐸0 ⇒

𝑑
𝑑𝑡

[1
2
𝑚𝑣2 + 𝑉 (𝑥)] = 𝑑𝐸0

𝑑𝑡
= 0 ⇒

𝑚𝑣 ̇𝑣 + 𝑑𝑉
𝑑𝑥

𝑑𝑥
𝑑𝑡⏟
=𝑣

= 0 ⇒

𝑣(𝑚 ̇𝑣 + 𝑑𝑉
𝑑𝑥

) = 0

(2.174)

The last equation must hold for all times and all circumstances. Thus, the term in brackets
must be zero.

𝑚 ̇𝑣 + 𝑑𝑉
𝑑𝑥

= 0 ⇒ 𝑚 ̈𝑥 = −𝑑𝑉
𝑑𝑥

= 𝐹 (2.175)

And we have recovered Newton’s second law.

In 3 dimensions it is the same procedure. What is a bit more complicated, is using the
chain rule. In the above 1-d case we used 𝑑𝑉

𝑑𝑡 = 𝑑𝑉 (𝑥(𝑡))
𝑑𝑡 = 𝑑𝑉

𝑑𝑥
𝑑𝑥(𝑡)

𝑑𝑡 . In 3-d this becomes:
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𝑑𝑉
𝑑𝑡

= 𝑑𝑉 ( ⃗𝑟(𝑡))
𝑑𝑡

= 𝑑𝑉
𝑑 ⃗𝑟

⋅ 𝑑 ⃗𝑟(𝑡)
𝑑𝑡

= ∇⃗𝑉 ⋅ ⃗𝑣 (2.176)

Thus, if we repeat the derivation, we find:

1
2
𝑚𝑣2 + 𝑉 ( ⃗𝑟) = 𝐸0 ⇒

𝑑
𝑑𝑡

[1
2
𝑚𝑣2 + 𝑉 ( ⃗𝑟)] = 0 ⇒

𝑚 ⃗𝑣 ⋅ ̇⃗𝑣 + ∇⃗𝑉 ⋅ ⃗𝑣 = 0 ⇒
𝑣(𝑚 ⃗𝑎 + ∇⃗𝑉 ) = 0 ⇒

𝑚 ⃗𝑎 = −∇⃗𝑉 = ⃗𝐹

(2.177)

And we have recovered the 3-dimensional form of Newton’s second Law. This is a great
result. It allows us to pick what we like: formulate a problem in terms of forces and
momentum, i.e. Newton’s second law, or reason from energy considerations. It doesn’t
matter: they are equivalent. It is a matter of taste, a matter of what do you see first,
understand best, find easiest to start with. Up to you!

2.3.7 Stable and Unstable Equilibrium
A particle (or system) is in equilibrium when the sum of forces acting on it is zero. Then,
it will keep the same velocity, and we can easily find an inertial system in which the
particle is at rest, at an equilibrium position.
The equilibrium position (or more general: state) can also be found directly from the
potential energy.

Potential energy and (conservative) forces are coupled via:

⃗𝐹 = −∇⃗𝑉 (2.178)

The equilibrium positions (∑𝑖
⃗𝐹𝑖 = 0) can be found by finding the extremes of the

potential energy:

𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ⇔ ∇⃗𝑉 = 0 (2.179)

Once we find the equilibrium points, we can also quickly address their nature: is it a
stable or unstable solution? That follows directly from inspecting the characteristics of
the potential energy around the equilibrium points.

For a stable equilibrium, we require that a small push or a slight displacement will result
in a force pushing back such that the equilibrium position is restored (apart from the
inertia of the object that might cause an overshoot or oscillation).

However, an unstable equilibrium is one for which the slightest push or displacement will
result in motion away from the equilibrium position.

The second derivative of the potential can be investigated to find the type of extremum.
For 1D functions that is easy, for scalar valued functions of more variables that is a bit
more complicated. Here we only look at the 1D case 𝑉 (𝑥) : ℝ → ℝ

𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 : ∇⃗𝑉 = 0 (2.180)

Luckily, the definition of potential energy is such that these rules are easy to visualize in
1D and to remember, see Figure 7
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Figure 2.123:  Stable and unstable position of a particle in a potential.

A valley is stable; a hill top is unstable.
NB: Now the choice of the minus sign in the definition of the potential is clear. Otherwise
a hill would be stable, but that does not feel natural at all.

It is also easy to visualize what will happen if we distort that particle from the
equilibrium state:

• The valley, i.e., the stable system, will make the particle move back to the lowest
point. Due to inertia, it will not stop but will continue to move. As the lowest
position is one of zero force, the particle will ‘climb’ toward the other end of the
valley and start an oscillatory motion.

• The top, i.e., the unstable point, will make the particle move away from the stable
point. The force acting on the particle is now pushing it outwards, ‘down the slope
of the hill’.

2.3.7.1 Taylor Series Expansion of the Potential
The Taylor expansion or Taylor series is a different way of writing down the value of a
function in the vicinity of a point 𝑥0. Even though the function is written down in a
different way, it is equal to 𝑓  in the vicinity of 𝑥0. It uses an infinite series of polynomial
terms with coefficients given by value of the derivative of the function at that specific
point 𝑥0. The value of the terms for higher n become small, so we can approximate the
function by using only the first few terms. The more of these first terms you take, the
closer your approximation is. Mathematically, it reads for a 1D scalar function 𝑓 : ℝ → ℝ:

𝑓(𝑥) ≈ 𝑓(𝑥0) + 1
1!

𝑓′(𝑥0)(𝑥 − 𝑥0) + 1
2!

𝑓′′(𝑥0)(𝑥 − 𝑥0)
2 + 1

3!
𝑓′′′(𝑥0)(𝑥 − 𝑥0)

3 + …(2.181)

For our purpose here, it suffices to stop after the second derivative term:

𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) + 1
2
𝑓′′(𝑥0)(𝑥 − 𝑥0)

2 + 𝒪(𝑥3) (2.182)

A way of understanding why the Taylor series actually works is the following.
Imagine you have to explain to someone how a function looks around some point 𝑥0, but
you are not allowed to draw it. One way of passing on information about 𝑓(𝑥) is to start
by giving the value of 𝑓(𝑥) at the point 𝑥0:

𝑓(𝑥) ≈ 𝑓(𝑥0) (2.183)

Next, you give how the tangent at 𝑥0 is: you pass on the first derivative at 𝑥0. The other
person can now see a bit better how the function changes when moving away from 𝑥0:

𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) (2.184)

Then, you tell that the function is not a straight line but curved, and you give the second
derivative. So now the other one can see how it deviates from a straight line:
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𝑓(𝑥) ≈ 𝑓(𝑥0) + 1
1!

𝑓′(𝑥0)(𝑥 − 𝑥0) + 1
2!

𝑓′′(𝑥0)(𝑥 − 𝑥0)
2 (2.185)

Note that the prefactor is placed back. But the function is not necessarily a parabola; it
will start deviating more and more as we move away from 𝑥0. Hence we need to correct
that by invoking the third derivative that tells us how fast this deviation is. And this
process can continue on and on.

Important to note: if we stay close enough to 𝑥0 the terms with the lowest order terms
will always prevail as higher powers of (𝑥 − 𝑥0) tend to zero faster than a lower powers
(for instance: 0.54 << 0.52).

This 3Blue1Brown clip explains the 1D Taylor series nicely.

Figure 2.124:  A 3blue1brown clip on Taylor series.

For scalar valued functions as our potentials 𝑉 ( ⃗𝑟) : ℝ3 → ℝ the extension of the Taylor
series is not too difficult. If we expand the function around a point

𝑉 ( ⃗𝑟) ≈ 𝑉 ( ⃗𝑟0) + ∇⃗𝑉 ( ⃗𝑟0) ⋅ ( ⃗𝑟 − ⃗𝑟0)

+1
2
( ⃗𝑟 − ⃗𝑟0) ⋅ (𝜕2𝑉 )( ⃗𝑟0) ⋅ ( ⃗𝑟 − ⃗𝑟0) + 𝒪(𝑟3)

(2.186)

The second derivative of the potential indicated by 𝜕2𝑉  is the Hessian matrix. Right now,
this all sound a bit hocus pocus. But don’t worry: you won’t need it right away in its full
glory. In the rest of your physics and math classes, this will all come back and start to
make sense.

Conceptually the extrema of the function are again the hills and valleys. The classification
of the extrema has next to hills and valleys also saddle points etc. In this course we will
not bother about these more dimensional cases, but only stick to simple ones.

83



Exercise 2.125: Gravity, a conservative force? 🌶

Is gravity ⃗𝐹𝑔 = 𝑚 ⃗𝑔 a conservative force? If yes, what is the corresponding potential
energy?

To find the answer:

a. Show ∇⃗ × 𝑚 ⃗𝑔 = 0
b. Find a 𝑉  that satisfies −𝑚 ⃗𝑔 = −∇⃗𝑉

Exercise 2.126: 🌶

A point particle of mass 𝑚 = 1 kg is at 𝑡 = 0 at position 𝑥 = 0. It has initial velocity
𝑣0. From 𝑡 = 0 to 𝑡𝑠𝑡𝑜𝑝 = 2 s it is under the influence of a constant force 𝐹 . This is a
1D problem.

The top graph shows the position of the particle. The bottom graph shows the Work
done on the particle by the force and the kinetic energy of the particle.

Analyze this situation and calculate the work done by the force at any time. Is the
work done in this case always sufficient to account for the change in kinetic energy?
What does it mean if the work is positive or negative?

Exercise 2.127: 🌶

A simple model for the frictional force experienced by a body sliding over a
horizontal, smooth surface is 𝐹𝑓 = −𝜇𝐹𝑔 with 𝐹𝑔 the gravitational force on the object.
The friction force is opposite the direction of motion of the object.

• Show that this frictional force is not conservative (and, consequently, a potential
energy associated does not exist!).

Tip

Think of two different trajectories to go from point 1 to point 2 and show that the
amount of work along these trajectories is not the same.

Or: find a closed loop for which the work done by the frictional force is non-zero.
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Exercise 2.128: 🌶

A force is given by: ⃗𝐹 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧

• Show that this force is conservative.
• Find the corresponding potential energy.

A second force is given by: ⃗𝐹 = 𝑦𝑥 + 𝑥𝑦 + 𝑧𝑧

• Show that this force is also conservative.
• Find the corresponding potential energy.

Exercise 2.129: 🌶

Another force is given by: ⃗𝐹 = 𝑦𝑥 − 𝑥𝑦

• Show that this force is not conservative.
• Compute the work done when moving an object over the unit circle in the xy-

plane in an anti-clockwise direction. (Hint: use Stokes theorem.)
• Discuss the meaning of your answer: is it positive or negative? And what does

that mean in terms of physics?

Exercise 2.130: 🌶

Given a potential energy 𝐸𝑝𝑜𝑡 = 𝑥𝑦.
a. Find the corresponding force (field).
b. Make a plot of ⃗𝐹  as a function of (x,y,z).
c. Describe the force and comment on what the potential itself already reveals about
the force.

Exercise 2.131: 🌶

Given a force field ⃗𝐹 = −𝑥𝑦𝑥 + 𝑥𝑦𝑦. A particle moves from (𝑥, 𝑦) = (0, 0) over the
x-axis to (𝑥, 𝑦) = (1, 0) and then parallel to the y-axis to (𝑥, 𝑦) = (1, 1). In a second
motion, the same particle goes from (𝑥, 𝑦) = (0, 0) over the y-axis to (𝑥, 𝑦) = (0, 1)
and then parallel to the x-axis to end also in (𝑥, 𝑦) = (1, 1).

• Show that not necessarily the work done over the two paths is equal.
• Compute the amount of work done over each of the paths.
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Exercise 2.132: 🌶 🌶

A particle of mass m is initially at position 𝑥 = 0. It has zero velocity. On the particle
a force is acting. The force can be described by 𝐹 = 𝐹0 sin 𝑥

𝐿  with 𝐹0 and 𝐿 positive
constants.

1. Show that this force is conservative and find the corresponding potential. Take
as reference point for the potential energy 𝑥 = 𝜋

2𝐿.
2. The particle gets a tiny push, such that it starts moving in the positive x-

direction. Its initial velocity is so small that, for all practical calculations, it can
be set to zero. What will happen to the particle after the push?

3. Find the maximum velocity that the particle can get. At which location(s) will
this take place?

Note: this is a 1-dimensional problem.
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Solution 2.133: Solution to Exercise 1

a. Show ∇⃗ × 𝑚 ⃗𝑔 = 0
∇⃗ × 𝑚 ⃗𝑔 = 0? How to compute it? For Cartesian coordinates there is an easy to
remember rule:

∇⃗ × ⃗𝐹 =

|
|
|
| 𝑥

𝜕
𝜕𝑥
𝐹𝑥

𝑦
𝜕
𝜕𝑦
𝐹𝑦

𝑧
𝜕
𝜕𝑧
𝐹𝑧|

|
|
|

(2.187)

If we chose our coordinates such that ⃗𝑔 = −𝑔𝑧 we get:

∇⃗ × ⃗𝐹𝑔 =

|
|
|
| 𝑥

𝜕
𝜕𝑥
0

𝑦
𝜕
𝜕𝑦
0

𝑧
𝜕
𝜕𝑧

−𝑚𝑔|
|
|
|
= 0 (2.188)

Thus ⃗𝐹𝑔 is conservative.

b. Find a 𝑉  that satisfies −𝑚 ⃗𝑔 = −∇⃗𝑉
Does −𝑚 ⃗𝑔 = −∇⃗𝑉  have a solution for V? Let’s try, using the same coordinates as
above.

−∇⃗𝑉 = −𝑚 ⃗𝑔 ⇒
𝜕𝑉
𝜕𝑥

= 0 → 𝑉 (𝑥, 𝑦, 𝑧) = 𝑓(𝑦, 𝑧)

𝜕𝑉
𝜕𝑦

= 0 → 𝑉 (𝑥, 𝑦, 𝑧) = 𝑔(𝑥, 𝑧)

𝜕𝑉
𝜕𝑧

= 𝑚𝑔 → 𝑉 (𝑥, 𝑦, 𝑧) = 𝑚𝑔𝑧 + ℎ(𝑥, 𝑦)

(2.189)

f,g,h are unknown functions. But all we need to do, is find one 𝑉  that satisfies −𝑚 ⃗𝑔 =
−∇⃗𝑉 .

So, if we take 𝑉 (𝑥, 𝑦, 𝑧) = 𝑚𝑔𝑧 we have shown, that gravity in this form is
conservative and that we can take 𝑉 (𝑥, 𝑦, 𝑧) = 𝑚𝑔𝑧 for its corresponding potential
energy.

By the way: from the first part (curl F = 0), we know that the force is conservative and
we know that we could try to find V from

𝑉 (𝑥, 𝑦, 𝑧) = − ∫
𝑟𝑒𝑓

𝑚 ⃗𝑔 ⋅ 𝑑 ⃗𝑟 = ∫
𝑟𝑒𝑓

𝑚𝑔𝑧 ⋅ 𝑑 ⃗𝑟

= ∫
𝑟𝑒𝑓

𝑚𝑔𝑑𝑧 = 𝑚𝑔𝑧 + 𝑐𝑜𝑛𝑠𝑡
(2.190)
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Solution 2.134: Solution to Exercise 3

Click for the solution Friction Not Conservative.

Solution 2.135: Solution to Exercise 4

Click for the solution Conservative Force.

Solution 2.136: Solution to Exercise 5

Click for the solution Non-Conservative Force.

Solution 2.137: Solution to Exercise 6

Click for the solution Potential energy & Force.

Solution 2.138: Solution to Exercise 7

Click for the solution Force Field.

Solution 2.139: Solution to Exercise 8

Click for the solution Sinusoidal Force Field.
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Exercise 2.140: Shooting a ball using a spring 🌶

A ball with mass 𝑚 is horizontally pressed against a spring with spring constant 𝑘,
compressing the spring by Δ𝑥.

1. Express the velocity of the ball when released.
2. Why is in real life the actual velocity of the ball less (friction is not the answer)?
3. Why is the velocity of the ball less when shot vertically?

Exercise 2.142: Firing a cannon ball⁶ 🌶

1. Show that, if you ignore drag, a projectile fired at an initial velocity 𝑣0 and angle
𝜃 has a range 𝑅 given by

𝑅 = 𝑣2
0 sin 2𝜃

𝑔
(2.191)

1. A target is situated 1.5 km away from a cannon across a flat field. Will the
target be hit if the firing angle is 42∘ and the cannonball is fired at an initial
velocity of 121 m/s? (Cannonballs, as you know, do not bounce).

2. To increase the cannon’s range, you put it on a tower of height ℎ0. Find the
maximum range in this case, as a function of the firing angle and velocity,
assuming the land around is still flat.

Exercise 2.143: Pushing a box uphill⁷ 🌶

You push a box of mass 𝑚 up a slope with angle 𝜃 and kinetic friction coefficient 𝜇.
Find the minimum initial speed 𝑣 you must give the box so that it reaches a height ℎ.
Use energy and work to find the answer.

⁶Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)
⁷Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)
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2.3.8 Examples, exercises and solutions

2.3.8.1 Exercise set 1

2.3.8.2 Answers set 1

2.3.8.3 Exercise set 2
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Exercise 2.144: Work done dragging a board⁸ 🌶 🌶

A uniform board of length 𝐿 and mass 𝑀  lies near a boundary that separates two
regions. In region 1, the coefficient of kinetic friction between the board and the
surface is 𝜇1, and in region 2, the coefficient is 𝜇2. Our objective is to find the net
work 𝑊  done by friction in pulling the board directly from region 1 to region 2, under
the assumption that the board moves at constant velocity.

1. Suppose that at some point during the process, the right edge of the board is a
distance 𝑥 from the boundary, as shown. When the board is at this position,
what is the magnitude of the force of friction acting on the board, assuming that
it’s moving to the right? Express your answer in terms of all relevant variables
(𝐿, 𝑀 , 𝑔, 𝑥, 𝜇1, and 𝜇2).

2. As we have seen, when the force is not constant, you can determine the work by
integrating the force over the displacement, 𝑊 = ∫ 𝐹(𝑥)d𝑥. Integrate your
answer from (1) to get the net work you need to do to pull the board from
region 1 to region 2.

⁸Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)
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Exercise 2.146: 🌶 🌶

A point particle (mass 𝑚) drops from a height 𝐻  downwards. It starts with zero initial
velocity. The only force acting is gravity (take gravity’s acceleration as a constant).

• Set up the equation of motion (i.e. N2) for 𝑚.
• Calculate the velocity upon impact with the ground.
• Calculate the kinetic energy of 𝑚 when it hits the ground.
• Calculate the amount of work done by gravity by solving the integral 𝑊12 =

∫2
1

⃗𝐹 ⋅ 𝑑 ⃗𝑟.
• Show that the amount of work calculated is indeed equal to the change in kinetic

energy.

Solve this exercise using IDEA.

Exercise 2.147: 🌶 🌶

A hockey puck (𝑚 = 160 gram) is hit and slides over the ice-floor. It starts at an initial
velocity of 10m/s. The hockey puck experiences a frictional force from the ice that
can be modeled as −𝜇𝐹𝑔 with 𝐹𝑔 the gravitational force on the puck. The friction
force eventually stops the motion of the puck. Then the friction is zero (otherwise it
would accelerate the puck from rest to some velocity :smiley: ). Constant 𝜇 = 0.01.

• Set up the equation of motion (i.e. N2) for 𝑚.
• Solve the equation of motion and find the trajectory of the puck.
• Calculate the amount of work done by gravity by solving the integral 𝑊12 =

∫2
1

⃗𝐹 ⋅ 𝑑 ⃗𝑟.
• Show that the amount of work calculated is indeed equal to the change in kinetic

energy.
• Solve this exercise using IDEA.

Exercise 2.148: 🌶

An electron (mass m, charge -e) is in a static electric field. The electric field is of the
form ⃗𝐸 = 𝐸0 sin(2𝜋𝑋

𝐿 )𝑥. As a consequence, the electron experiences a force ⃗𝐹 =
−𝑒 ⃗𝐸 Due to this force, the electron moves from position 𝑥 = 1

4𝐿 to 𝑥 = 0.

• Calculate the amount of work done by the electric field.
• Assuming that the electron was initially at rest, what is the velocity at 𝑥 = 0?
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Exercise 2.149: 🌶

A force 𝐹 = 𝐹0𝑒−𝑡/𝜏  is acting on a particle of mass m. The particle is initially at
position 𝑥 = 0. It is, starting at 𝑡 = 0, moving at a constant velocity 𝑣0 > 0 to 𝑥 =
𝐿, (𝐿 > 0).

a. Calculate the amount of work done by 𝐹 .
b. The amount of work done is equal to the change in kinetic energy. However, the
particle doesn’t change its kinetic energy. Why is this general rule not violated in this
case?

Exercise 2.150: Work by a lineair force 🌶

A point particle of mass 𝑚 = 2kg is at 𝑡 = 0 at position 𝑥 = 0. It has initial velocity
𝑣0. From 𝑡 = 0 to 𝑡𝑠𝑡𝑜𝑝 = 4s it is under the influence of a force 𝐹(𝑥) that linearly
increases with the position: 𝐹(𝑥) = 𝑘𝑥 with 𝑘 > 0. This is a 1D problem.

The top graph show the position of the particle. The bottom graph shows the Work
done on the particle by the force and the kinetic energy of the particle.

Analyse this situation and calculate the work done by the force at any time. Is the
work done in this case always sufficient to account for the change in kinetic energy?
What does it mean if the work is positive or negative?

Are the red (𝑊 ) line and the green (𝐸𝑘𝑖𝑛) parallel? What does that mean?

Solution 2.151: Solution to Exercise 9

1. 𝑊 = Δ𝐸𝑘𝑖𝑛 = ∫𝑥
0

𝐹d𝑥 = ∫𝑥
0

𝑘𝑥𝑑𝑥 = 1/2𝑘𝑥2 = 1/2𝑚𝑣2 ⇒ 𝑣 = √𝑘𝑥2

𝑚
2. The spring has mass as well.
3. The gravitational does work as well (𝑊 = 𝐹𝑔d𝑥 < 0)

Solution 2.152: Solution to Exercise 13
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Solution 2.154: Solution to Exercise 15

Work done by electric field when the electron moves from 𝑥 = 1
4𝐿 to 𝑥 = 0:

𝑊 = ∫
0

1
4𝐿

⃗𝐹  .𝑑 ⃗𝑠 = −𝑒𝐸0 ∫
0

1
4𝐿

sin(2𝜋 𝑥
𝐿

)𝑑𝑥 =

−𝑒𝐸0
𝐿
2𝜋

[− cos(2𝜋 𝑥
𝐿

)]
0

1
4𝐿

= 1
2𝜋

𝑒𝐸0𝐿
(2.192)

Work done is gain in kinetic energy: Δ𝐸𝑘𝑖𝑛 = 𝑊 . Assuming the only work done is by
the electric field and using initial velocity is zero: 𝑣𝑖 = 0 :

1
2
𝑚𝑣2 =  1

2𝜋
𝑒𝐸0𝐿 ⇒ 𝑣 =  √𝑒𝐸0𝐿

𝜋𝑚
(2.193)

Note that indeed the work done is positive, as it should in this case since the electron
starts with zero velocity.

2.3.8.4 Answers set 2

Solution 2.155: Solution to Exercise 16

𝑊 = ∫
𝐿

0

⃗𝐹  .𝑑 ⃗𝑠 = ∫
𝐿

0
𝐹0𝑒− 𝑡

𝜏  𝑑𝑥 (2.194)

Particle velocity is 𝑣0 = 𝑐𝑜𝑛𝑠𝑡. Thus, trajectory 𝑥(𝑡) = 𝑣0𝑡 since at 𝑡 = 0 → 𝑥 = 0
Consequently: 𝑥 = 𝐿 → 𝑡 =  𝐿

𝑣0

Thus, we can write for the amount of work done:

𝑊 = ∫
𝐿
𝑣0

0
𝐹0𝑒− 𝑡

𝜏 ⋅ 𝑣0𝑑𝑡 =

𝐹0𝑣0[−𝜏𝑒− 𝑡
𝜏 ]

𝐿/𝑣0

0
= 𝐹0𝑣0𝜏(1 − 𝑒− 𝐿

𝑣0𝜏 )
(2.195)

We note: 𝑊 > 0 and naively, we could expect that the kinetic energy of the particle
would have increased. But that isn’t the case: it started with 𝐸𝑘𝑖𝑛 = 1

2𝑚𝑣2
0 and it kept

this along the entire path as it is given that the particle is traveling with a constant
velocity.

From this last statement, we immediately learn, that there must be a second force
acting on the particle. This force is exactly equal and opposite to 𝐹  at all times!
Otherwise, the particle would accelerate and change its velocity. Consequently, this
second force also perform work on 𝑚, the amount is exactly −𝑊  and thus the total
work done on the particle is zero which reflects that the particle does not change its
kinetic energy.
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2.4 Angular Momentum, Torque & Central Forces

2.4.1 Torque & Angular Momentum
From experience we know that if we want to unscrew a bottle, lift a heavy object on one
side, try to unscrew a screw, we better use ‘leverage’.

Figure 2.156:  Lifting is easier using leverage.

With a relatively small force 𝐹𝑆 , we can lift the side of a heavy object. The key concept to
use here is torque, which in words is loosely formulated: apply the force using a long arm
and the force seems to be magnified. The torque is then force multiplied by arm:

𝜏 = 𝐹𝑜𝑟𝑐𝑒 𝑡𝑖𝑚𝑒𝑠 𝑎𝑟𝑚

This is, of course, too sloppy for physicists. We need strict, formal definitions. So, we put
the above into a mathematical definition.

torque

⃗𝜏 ≡ ⃗𝑟 × ⃗𝐹 (2.196)

That is: torque (or krachtmoment in Dutch) is the cross product of ‘arm’ as a vector(!) and
the force. We notice a few peculiarities.

1. like force, torque is a vector. That is: it has a magnitude and a direction. In principle:
three components.

2. its direction is perpendicular to the force vector ⃗𝐹  and perpendicular to the arm ⃗𝑟.
3. the arm is not a number: it is a vector!

We further know from experience that we can balance torques, like we can balance forces.
Rephrased: the net effect of more than one force is found by adding all the forces (as
vectors!) and using the net force in Newtons Second Law: 𝑚 ⃗𝑎 = ∑ ⃗𝐹𝑖 = ⃗𝐹𝑛𝑒𝑡. From
Newtons First Law, we immediately infer: if ∑ ⃗𝐹𝑖 = ⃗𝐹𝑛𝑒𝑡 = 0 then the object moves at
constant velocity. We can move with the object at this speed and conclude that it from
this perspective has zero velocity: it doesn’t move, i.e. it is in equilibrium.

The same holds for torque: we can work with the sum of all torques that act on an object:
∑ ⃗𝜏𝑖 = ⃗𝜏𝑛𝑒𝑡. And if this sum is zero, the object is in equilibrium.

However, there is a catch: using torques requires that we are much more explicit and
precise about the choice of our origin. Why? The reason is in the ‘arm’. That is only
defined if we provide an origin.

2.4.1.1 The seesaw and torque
Let’s consider a simple example (simple in the sense that we are all familiar with it): the
seesaw.
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Figure 2.157:  An adult (left) and a child (right) on a seesaw.

It is obvious that the adult -seesawing with the child- should sit much closer to the pivot
point than the child. That is: we assume that the mass of the adult is greater than that of
the child.

Let’s turn this picture into one that captures the essence and includes the necessary
physical quantities, and then draw a free-body diagram.

Figure 2.158:  Free-body diagram of the seesaw and the masses.

What did we draw?

1. The force of gravity acting on the two masses 𝑀  and 𝑚. That is obvious: without
forces nothing will happen and there is nothing to be analyzed.

2. The ‘reaction forces’ from the seesaw on both masses. Why? If the seesaw is in
equilibrium, then each of the masses is in equilibrium and the sum of forces on each
mass must be zero.

3. The distance of each of the masses to the pivot point. Why? Leverage! The heavy
𝑀  must be closer to the pivot point the get equilibrium.

4. An origin 𝑂. Why? We need a point to measure the ‘arm’, ‘leverage’, from.
5. The 𝑧-coordinate. Why? We deal with forces in the vertical direction. Hence a

coordinate, a direction that we all use, is handy.

Analysis
Time for a first analysis: what keeps this seesaw in equilibrium?

1. The sum of forces on each of the masses is zero. As gravity pulls them down, the
seesaw must exert a force of the same magnitude but in the opposite direction.
These are the green forces.

2. With this idea we have the masses in equilibrium, but not necessarily the seesaw.
Why? We did not consider forces on the seesaw. Which are these: (a) the reaction
force (i.e. the N3 pair) of the green force from the seesaw on mass 𝑀 . We did not
draw that! Similarly, for the mass 𝑚.

3. Now that we focus on the seesaw itself: this is in equilibrium (that is given), but
there are two forces acting on it in the negative 𝑧-direction as we found in (2). Even
if we consider the mass of the seesaw: that will not help, gravity will pull it
downwards. What did we forget? The force at the pivot point, of course! The pivot
will exert an upward force, preventing the seesaw from falling down. For simplicity,
we assume that the seesaw has zero mass. Thus, there are three forces acting on it:
−𝑀𝑔, −𝑚𝑔, 𝐹𝑝 with 𝐹𝑝 − 𝑀𝑔 − 𝑚𝑔 = 0.

Let’s redraw, now concentrating on the forces on the seesaw.
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Figure 2.159:  Free-body diagram of the seesaw.

Analysis part 2
We know that the seesaw is in equilibrium, thus

𝐹𝑝 − 𝑀𝑔 − 𝑚𝑔 = 0 (2.197)

This guarantees that the seesaw does not change its velocity, and as it does not move at
some time 𝑡0, it doesn’t move for all 𝑡 > 𝑡0.

But this doesn’t guarantee that the seesaw doesn’t rotate around the pivot point. For that
we need that the ‘leverages’ on the left and right side ‘perform’ the same.
Making this precise: the torques exerted on the seesaw must also equate to zero.
We have 3 forces, thus 3 torques: −𝑀𝑔 with arm 𝐿, −𝑚𝑔 with arm 𝑙 and 𝐹𝑝 with arm
zero.

Now we need to be even more precise: torque is a vector and it is made as a cross product
of the vector ‘arm’ and the force.
We have already drawn an 𝑥-coordinate in the figure, that will allow us to write the ‘arm’
as a vector. After all, we need to evaluate the cross product ⃗𝑟 × ⃗𝐹 . We do that for the
three forces, starting on the left:

⃗𝜏1 = −𝐿𝑥 × (−𝑀𝑔)𝑧 = 𝑀𝐿𝑔 𝑥 × 𝑧 = 𝑀𝐿𝑔(−𝑦) = −𝑀𝐿𝑔 𝑦 (2.198)

We have used here, that the cross product of 𝑥 with 𝑧 is equal to −𝑦 with 𝑦 the unit
vector in the 𝑦-direction pointing into the screen.

Similarly for the force coming from the small mass 𝑚 on the right side:

⃗𝜏2 = 𝑙𝑥 × (−𝑚𝑔)𝑧 = −𝑚𝑙𝑔 𝑥 × 𝑧 = 𝑚𝑙𝑔 𝑦 (2.199)

Finally, the torque from the force exerted by the pivot point:

⃗𝜏3 = 0𝑥 × 𝐹𝑝𝑧 = 0 (2.200)

Next, we evaluate the total torque:

⃗𝜏1 + ⃗𝜏2 + ⃗𝜏3 = (𝑚𝑙𝑔 − 𝑀𝐿𝑔)𝑦 (2.201)

In order for the seesaw not to start rotating, we must have that the torque is zero and
thus:

∑ ⃗𝜏𝑖 = 0 ⇒ 𝑚𝑙𝑔 = 𝑀𝐿𝑔 → 𝑚
𝑀

= 𝐿
𝑙

(2.202)

A result we expected: the greater mass should be closer to the pivot point.

2.4.1.2 Different origin
So far, so good. But what if we had chosen the origin not at the pivot point, but
somewhere to the left? Then all ‘arm’ will change length. And all torques will be different.
Wouldn’t that make ∑ ⃗𝜏𝑖 ≠ 0?
No, it wouldn’t! Let’s just do it and recalculate. In the figure below, we have moved the
origin to the left end of the seesaw. The distance from the heavy mass to the origin is Λ
(green arrow).
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Figure 2.160:  Free-body diagram with the origin located at the seesaw’s end.

We still have that the sum of forces is zero. But what about the sum of torques?
Obviously, the choice of the origin can not affect the seesaw: it is still in balance,
regardless of our choice of the origin. Let’s see if that is correct:

∑ ⃗𝜏𝑖 = Λ𝑥 × −𝑀𝑔𝑧 + (Λ + 𝐿) × 𝐹𝑝𝑧 + (Λ + 𝐿 + 𝑙)𝑥 × −𝑚𝑔𝑧 (2.203)

We have drawn the three unit vectors 𝑥, 𝑦, 𝑧 in the figure. We will use again: 𝑥 × 𝑧 = −𝑦.
This simplifies the torque equation above to:

∑ ⃗𝜏𝑖 = [𝑀𝑔Λ − (Λ + 𝐿)𝐹𝑝 + 𝑚𝑔(Λ + 𝐿 + 𝑙)]𝑦 (2.204)

This is clearly more complicated than the expression we had with the first choice of the
origin. Moreover, the force from the pivot point shows up in our expression.

Luckily, we have equilibrium. Hence: 𝐹𝑝 − 𝑀𝑔 − 𝑚𝑔 = 0 ⇒ 𝐹𝑝 = 𝑀𝑔 + 𝑚𝑔. We
substitute this into our torque equation:

∑ ⃗𝜏𝑖 = [𝑀𝑔Λ − (Λ + 𝐿)(𝑀𝑔 + 𝑚𝑔)) + 𝑚𝑔(Λ + 𝐿 + 𝑙)]𝑦

= [𝑀𝑔(Λ − (Λ + 𝐿)) + 𝑚𝑔(−(Λ + 𝐿) + Λ + 𝐿 + 𝑙)]𝑦
= [−𝑀𝑔𝐿 + 𝑚𝑔𝑙]𝑦

(2.205)

Which is exactly the same expression as we found before. So, indeed, the choice of the
origin doesn’t matter.

Conclusion

For equilibrium we need that the sum of torques is zero:

∑
𝑖

⃗𝜏𝑖 = 0 (2.206)

2.4.2 Angular Momentum
From our seesaw example we learn: the seesaw can only be in equilibrium if the sum of
torques is zero. What if this sum is non-zero? That is, a net torque operates on the seesaw.

We know that the seesaw will rotate and in order to balance it, we have to shift at least
one of the masses.

In which direction will it rotate?

Before answering: first we need to think about direction of rotation. Does it have
direction and if so: how do we make clear what that is?

Again the seesaw will give guidance. Suppose we remove the smaller mass all together.
Then, it is obvious: the ‘heavy’ left side will rotate to the ground and the light right side
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upwards. From the point of view we are standing: the seesaw will rotate counter
clockwise.

We will use the corkscrew rule or right hand rule to give that a direction: rotate a
corkscrew clockwise and the screw will move into the cork away from you; rotate a
corkscrew counter clockwise and it will move out of the cork, towards you. Of course, in
stead of a corkscrew you can think of a screwdriver or a water tap: closing is rotating
‘clock wise, opening the tap is counter clockwise.

Figure 2.161:  The rotation is given by the black arrow. You can find it by using the
corkscrew rule: rotating a corkscrew as the blue arrow indicates gives that the screw

moves forward like the black arrow.

With this, we can define the direction of rotation better than via clock or counter clock
wise. In our seesaw example, we will say: if the seesaw rotates clockwise, its rotation is
described by a vector that points in the positive 𝑦-direction as given in the figure, that is
pointing into the paper (or screen).

Now, we can couple this to the direction of the torque. We saw -taking the origin at the
pivot point- two torques acting on the seesaw. The large mass has its torque pointing in
the negative 𝑦-direction: it points out of the screen/paper. And this torque tries to rotate
the seesaw counter clockwise. On the other hand, the small mass has a torque pointing in
the positive 𝑦-direction which is in line with it trying to rotate the seesaw clockwise.
Which of the two is ‘strongest’ determines the direction of rotation: if 𝑀𝑔𝐿 > 𝑚𝑔𝑙 then
the net torque is in the minus-𝑦 direction. That is, the torque of the larger mass is more
negative than the smaller one is positive: −𝑀𝑔𝐿 + 𝑚𝑔𝑙 < 0 and the net torque points
towards us.

The quantity that goes with this, is the angular momentum. It is defined as

angular momentum

⃗𝑙 ≡ ⃗𝑟 × ⃗𝑝 (2.207)

Note that it is a cross product as well. Hence it is a vector itself. Further note that ⃗𝑟 × ⃗𝑝 ≠
⃗𝑝 × ⃗𝑟. The order matters! First ⃗𝑟 then ⃗𝑝. If you do it the other way around, you

unwillingly have introduced a minus sign that should not be there.
Furthermore, note that since ⃗𝑙 ≡ ⃗𝑟 × ⃗𝑝, ⃗𝑙 is perpendicular to the plane formed by ⃗𝑟 and ⃗𝑝.
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Figure 2.162:  Angular momentum of a particle at a certain position with momentum.

2.4.2.1 Torque & Analogy to N2
Angular momentum obeys a variation of Newton’s second law that ties it directly to
torque.

⃗𝑙 = ⃗𝑟 × ⃗𝑝 ⇒ (2.208)

𝑑 ⃗𝑙
𝑑𝑡

= 𝑑( ⃗𝑟 × ⃗𝑝)
𝑑𝑡

= 𝑑 ⃗𝑟
𝑑𝑡⏟
= ⃗𝑣

× ⃗𝑝

⏟
=0𝑠𝑖𝑛𝑐𝑒 ⃗𝑣//𝑝⃗

+ ⃗𝑟 × 𝑑 ⃗𝑝
𝑑𝑡⏟

𝑁2:= ⃗𝐹

= ⃗𝑟 × ⃗𝐹 (2.209)

Thus, we find a general law for the angular momentum:

N2 for angular momentum

𝑑 ⃗𝑙
𝑑𝑡

= ⃗𝑟 × ⃗𝐹 (2.210)

Again, note that the right hand side is a cross product, so the order does matter.

With the torque denoted by ⃗𝜏 , we have

⃗𝜏 ≡ ⃗𝑟 × ⃗𝐹 (2.211)
then we can write down an equation similar to N2 ( ̇⃗𝑝 = ⃗𝐹) but now for angular motion

̇⃗𝑙 = ⃗𝜏 (2.212)
where the force is replaced by the torque and the linear momentum by the angular
momentum.

NB: Note that the torque and angular moment change if we choose a different origin as
this changes the value of ⃗𝑟.

Intermezzo: cross product

Here is some recap for the cross product. See also the Lin. Alg. book page.
A cross product of two vectors  and  is defined as

It is a common mistake to identify angular momentum with rotational motion. That is not
correct. A particle that travels in a straight line will, in general, also have a non-zero
angular momentum, see Figure 11. Here we look at a free particle: there are no forces
working on it. So it travels in a straight line, with constant momentum.

Figure 2.163:  Angular momentum of a free particle.
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However, the particle position does change over time. So: is its angular momentum
constant or not?
That is easy to find out. We could take ‘N2’ for angular momentum:

𝑑 ⃗𝑙
𝑑𝑡

= ⃗𝑟 × ⃗𝐹⏟
=0

𝑓𝑟𝑒𝑒𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

= 0 ⇒ ⃗𝑙 = 𝑐𝑜𝑛𝑠𝑡 (2.213)

Clearly, the angular momentum of a free particle is constant. Moreover, the momentum of
a free particle is also constant. But what about the position vector: isn’t that changing
over time and eventually becomes very, very long? Why does that not change ⃗𝑟 × ⃗𝑝?
Take a look at Figure 12. We have chosen the 𝑥𝑦-plane such that both ⃗𝑟 and ⃗𝑝 are in it.
Furthermore, we have taken it such that ⃗𝑝 is parallel to the 𝑥-axis.

Figure 2.164:  Angular momentum of a free particle is constant.

At some point in time, the particle is at position ⃗𝑟1. Its angular momentum is
perpendicular to the 𝑥𝑦-plane and has magnitude | | ⃗𝑟1 × ⃗𝑝 | | = 𝑟⟂𝑝. Later in time it is
at position ⃗𝑟2. Still, its angular momentum is perpendicular to the 𝑥𝑦-plane and has
magnitude | | ⃗𝑟2 × ⃗𝑝 | | = 𝑟⟂𝑝, indeed identical to the earlier value. This shows that
indeed the angular momentum of a free particle is constant.

2.4.3 Examples & Exercises

Example: Throwing a basketball

As seen in class: one person throws a basketball to another via a bounce on the
ground, the basketball starts to spin after hitting the ground although initially it did
not.

Figure 2.165:  A bouncing basketball.

When the ball hits the ground a friction force is acting on the ball. This force will
apply a torque on the ball. The friction is directed opposite to the direction of motion.
The arm ⃗𝑟 from the center of the ball to where the force is acting, is downwards.
Using the right-hand rule we find that the torque is pointing in the plane of the
screen, and thus the rotation is clockwise (forwards spin).
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The forwards momentum of the ball is reduced by the action of the force. The
upwards components is just flipped by the bounce on the ground. Therefore the
outgoing ball is bouncing up at a steeper angle than it is was incoming.

Conservation of angular momentum & spinning wheel

As seen in class, we have a student sitting on a chair that can rotate (swivel chair).
The student is holding a bicycle wheel in horizontal position.

Figure 2.166:  Student with a rotating wheel on a swivel chair.

Once the student starts to spin the wheel while sitting on the chair, the student will
start to rotate in the opposite direction (with smaller angular velocity, later on we will
see why their speeds are different). There is no external force on the student + wheel.
Consequently, the total angular momentum must stay constant. But the student exerts
an angular momentum on the wheel, causing it to rotate. But at the same time, due to
action = - reaction, the wheel exerts also a torque on the student. But in the opposite
direction. Thus, to compensate the angular momentum pointing up (counter clockwise
rotation), an angular momentum pointing down (clockwise rotation) of the same
magnitude must occur, keeping the total angular momentum of student + wheel
constant.

2.4.4 Central Forces
We have looked at a specific class of forces: the conservative ones. Here we will inspect a
second class, that is very useful to identify: the central forces.

A force is called a central force if:
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Exercise 2.167: 

A point particle (mass 𝑚) is initially located at position 𝑃 = (𝑥0, 𝐻, 0). At 𝑡 = 0, it is
released from rest and falls in a force field of constant acceleration ⃗𝑎 = (0, −𝑎, 0) that
acts on the mass.

Analyze what happens to the angular momentum of 𝑚.

Exercise 2.169: 

The same question, but now the particle has an initial velocity ⃗𝑣 = (𝑣0, 0, 0).

⃗𝐹 = | ⃗𝐹 ( ⃗𝑟) | 𝑟̂ (2.223)

In words: a force is central if it points always into the direction of the origin or exactly in
the opposite direction. The reason to identify this class is in the consequences it has for
the angular momentum.

Suppose, a particle of mass 𝑚 is subject to a central force. Then we can immediately infer
that its angular momentum is a constant:

𝑖𝑓 ⃗𝐹 = | ⃗𝐹 ( ⃗𝑟) | 𝑟̂𝑡ℎ𝑒𝑛𝑑 ⃗𝑙
𝑑𝑡

= ⃗𝑟 × ⃗𝐹 = | ⃗𝐹 ( ⃗𝑟) | ⃗𝑟 × 𝑟̂ = 0 (2.224)

where we have used that ⃗𝑟 and 𝑟̂ are always parallel so their cross-product is zero.

The above is rather trivial, but has a very important consequence: a particle that moves
under the influence of a central force, moves with a constant angular momentum (vector!)
and must move in a plane. It can not get out of that plane. Thus its motion is at maximum
a 2-dimensional problem. We can always use a coordinate system, such that the motion of
the particle is confined to only two of the three coordinates, e.g. we can choose our 𝑥, 𝑦
plane such that the particle moves in it and thus always has 𝑧(𝑡) = 0.

Why is this so? Why does the fact that the angular momentum vector is a constant
immediately imply that the particle motion is in a plane? The argumentation goes as

Exercise 2.170: 

Similar situation: can you find an example of a falling object for which the angular
momentum stays constant? Ignore friction with the air.
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Solution 2.171: Solution to Exercise 1

The particle falls under a force that points in the negative 𝑦-direction. As a
consequence, it will start moving vertically downwards:

𝑥 : ℎ(1𝑐𝑚)𝑚𝑑𝑣𝑥
𝑑𝑡

= 0 → 𝑣𝑥 = 𝐶1 = 0

𝑦 : ℎ(1𝑐𝑚)𝑚
𝑑𝑣𝑦

𝑑𝑡
= −𝑚𝑎 → 𝑣𝑦 = −𝑎𝑡 + 𝐶2 = −𝑎𝑡

(2.214)

Thus, we find for the momentum om the particle: ⃗𝑝 = (0, −𝑚 𝑎𝑡).

The position of 𝑚 follows from:

𝑥 : ℎ(1𝑐𝑚)𝑑𝑥
𝑑𝑡

= 𝑣𝑥 = 0 → 𝑥(𝑡) = 𝐶3 = 𝑥0

𝑦 : ℎ(1𝑐𝑚)𝑑𝑦
𝑑𝑡

= 𝑣𝑦 = −𝑎𝑡 → 𝑦(𝑡) = −1
2
𝑎𝑡2 + 𝐶4 = 𝐻 − 1

2
𝑎𝑡2

(2.215)

We can now compute the angular momentum:

⃗𝑙 = ⃗𝑟 × ⃗𝑝

= (𝑥0𝑥 + (𝐻 − 1
2
𝑎𝑡2)𝑦) × (−𝑚𝑎𝑡𝑦)

= −𝑚𝑥0𝑎𝑡𝑥 × 𝑦⏟
=𝑧

+ 𝑥0(𝐻 − 1
2
𝑎𝑡2)𝑦 × 𝑦⏟

=0

= −𝑚𝑥0𝑎𝑡 𝑧

(2.216)

Thus, the angular momentum is pointing in the negative 𝑧-direction and increases
linearly with time in magnitude.

We could have tried to find this via the variation of N2 for angular momentum. Now,
we need to compute the torque on 𝑚 and solve 𝑑 ⃗𝑙

𝑑𝑡 = ⃗𝜏 . This goes as follows:

⃗𝜏 = ⃗𝑟 × ⃗𝐹
= (𝑥𝑥 + 𝑦𝑦) × −𝑚𝑎𝑦
= −𝑚𝑎 𝑥𝑧

(2.217)

And thus:

𝑑 ⃗𝑙
𝑑𝑡

= −𝑚𝑎 𝑥𝑧 (2.218)

To get any further, we need information about 𝑥(𝑡). From the 𝑥-component of N2 we
know (see above): 𝑥(𝑡) = 𝑥0. If we plug this in, we get:

𝑑 ⃗𝑙
𝑑𝑡

= −𝑚𝑎 𝑥0𝑧 → ⃗𝑙 = −𝑚𝑥0𝑎𝑡 + 𝐶5 = −𝑚𝑥0𝑎𝑡 (2.219)

where we have used: 𝑡 = 0 → ⃗𝑝 = 0 → ⃗𝑙 = 0 ⇒ 𝐶5 = 0

follows.
Imagine a particle that moves under the influence of a central force. At some point in time
it will have position ⃗𝑟0 and momentum ⃗𝑝0. Neither of them is zero. We will assume that
⃗𝑟0 and ⃗𝑝0 are not parallel (in general they will not be). Thus they define a plane. Due to
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Solution 2.172: Solution to Exercise 2

We can follow the same procedure as in exercise (6.1). But now, the outcome of the 𝑥-
component of N2 changes.

𝑥 : ℎ(1𝑐𝑚)𝑚𝑑𝑣𝑥
𝑑𝑡

= 0 → 𝑣𝑥 = 𝐶1 = 𝑣0

𝑦 : ℎ(1𝑐𝑚)𝑚
𝑑𝑣𝑦

𝑑𝑡
= −𝑚𝑎 → 𝑣𝑦 = −𝑎𝑡 + 𝐶2 = −𝑎𝑡

(2.220)

Thus, we find for the momentum om the particle: ⃗𝑝 = (𝑚𝑣0, −𝑚𝑎𝑡).

The position of 𝑚 follows from:

𝑥 : ℎ(1𝑐𝑚)𝑑𝑥
𝑑𝑡

= 𝑣𝑥 = 𝑣0 → 𝑥(𝑡) = 𝑣0𝑡 + 𝐶3 = 𝑥0 + 𝑣0𝑡

𝑦 : ℎ(1𝑐𝑚)𝑑𝑦
𝑑𝑡

= 𝑣𝑦 = −𝑎𝑡 → 𝑦(𝑡) = −1
2
𝑎𝑡2 + 𝐶4 = 𝐻 − 1

2
𝑎𝑡2

(2.221)

We can now compute the angular momentum:

⃗𝑙 = ⃗𝑟 × ⃗𝑝

= ((𝑥0 + 𝑣0𝑡)𝑥 + (𝐻 − 1
2
𝑎𝑡2)𝑦) × (𝑚𝑣0𝑥 − 𝑚𝑎𝑡𝑦)

= −𝑚(𝑥0 + 𝑣0𝑡)𝑎𝑡𝑥 × 𝑦⏟
=𝑧

+ (𝐻 − 1
2
𝑎𝑡2)𝑚𝑣0 𝑦 × 𝑥⏟

=−̂𝑧

= −𝑚(𝐻𝑣0 + 𝑥0𝑎𝑡 + 1
2
𝑣0𝑎𝑡2 )𝑧

(2.222)

Thus, the angular momentum still points in the negative 𝑧-direction but increases
quadratically with time in magnitude.

Solution 2.174: Solution to Exercise 3

We can take the situation of Exercise 1, but shift our origin such that at 𝑡 = 0 → 𝑥 =
0. Now the particle will fall along the 𝑦-axis. It has its momentum also in the 𝑦-
direction and consequently ⃗𝑙 = ⃗𝑟 × ⃗𝑝 = 0 and stays zero!
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the cross-product ⃗𝑙0 = ⃗𝑟0 × ⃗𝑝0 is perpendicular to this plane.
A little time later, say Δ𝑡 later, both position and momentum will have changed. Since the
force is central, the force is also in the plane defined by the initial position and
momentum. Thus the change of momentum is in that plane as well: ⃗𝑝(𝑡 + Δ𝑡) = ⃗𝑝(𝑡) +

⃗𝐹Δ𝑡. The right hand side is completely in our plane. And thus, the new momentum is
also in the plane. But that means that the velocity is also in the same plane. An thus the
new position ⃗𝑟(𝑡 + Δ𝑡) = ⃗𝑟(𝑡) + 𝑝⃗

𝑚Δ𝑡 must be in the same plane as well. We can repeat
this argument for the next time and thus see, that both momentum and position can not
get out of the plane. This is, of course, fully in agreement with the fact that ⃗𝑙 = 𝑐𝑜𝑛𝑠𝑡 for
a central force.

2.4.5 Central forces: conservative or not?
We can further restrict our class of central forces:

𝑖𝑓 ⃗𝐹 ( ⃗𝑟) = 𝑓(𝑟)𝑟̂𝑡ℎ𝑒𝑛𝐹𝑖𝑠𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑎𝑛𝑑𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 (2.225)

In the above, | ⃗𝐹 ( ⃗𝑟) | = 𝑓(𝑟), that is: the magnitude of the force only depends on the
distance from the origin not on the direction. Rephrased: the force is spherically symmetric.
If that is the case, the force is automatically conservative and a potential does exist.

Both the concept of central forces and potential energy play a pivotal role in
understanding the motion of celestial bodies, like our earth revolving the sun. The
planetary motion is an example of using the concept of central forces. It is, however, also
an example in its own right. Using his new theory, Newton was able to prove that the
motion of the earth around the sun is an ellipsoidal one. It helped changing the way we
viewed the world from geo-centric to helio-centric.

2.4.5.1 Keppler’s Laws
Before we embark at the problem of the earth moving under the influence of the sun’s
gravity, we will go back in time a little bit.

Intermezzo: Tycho Brahe & Johannes Kepler

We find ourselves back in the Late Renaissance, that is around 1550-1600 AD. In
Europe, the first signs of the scientific revolution can be found. Copernicus proposed
his heliocentric view of the solar system. Galilei used his telescope to study the
planets and found further evidence for the heliocentric idea. In Denmark, Tycho
Brahe (1546-1601) made astronomical observations with data of unprecedented
precision. He did so without the telescope as the first records of telescopes date back
to around 1608 AD.left:Tycho Brahe (1546-1601) - right: Sophia Brahe (1559-1643).
From Wikimedia Commons
(L, R), public domain.Brahe initially studied law, but developed a keen interest in
astronomy. He was heavily influenced by the solar eclipse of August 21 in 1560. The
eclipse had been predicted via the theory of celestial motion at that time. However,
the prediction was off by a day. This led Brahe to the conclusion that in order to
advance celestial science, many more and much better observations were needed. He
devoted much of his time in achieving this. One of his best assistants was his younger
sister, Sophie.On November 11 1572, Brahe observed a bright, new star in the
constellation Cassiopeia (it consists of five bright stars forming a M or W). That was
another event that made him decide to spend his days (or rather nights 😊 )
gathering astronomical data. The general believe in those days was still that
everything beyond the Moon was eternal, never changing. So, this new star, that all in
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a sudden appeared, must be closer to the earth than the Moon itself. Brahe set out to
measure its daily parallax against the five stars of Cassiopeia. But he didn’t observe
any parallax. Consequently, the new star’s position had to be farther out than the
Moon and the other planets that did show daily parallax. Moreover, Brahe kept
measuring for months and still found no parallax. That meant that this new star was
even further out than the known planets that show no daily parallax but did so for
periods of month. Brahe reached the conclusion that this new ‘thing’ thus could not
be yet another planet, but that it was a star. Another nail to the coffin of the Aristotle
view. Brahe wrote a small book about it, called De Nova Stella (published in 1573). He
uses the term ‘nova’ for a new star. We see this back in our name for the phenomenon
observed by Brahe: we call it a supernova. By now it is known that this new star, this
supernova is some 8,000 light years away from us. Brahe was upset by those who
denied the new findings. In his introduction of De Nova Stella he writes (given here in
our modern words): “Oh, coarse characters. Oh, blind spectators of heaven”. The work
and the booklet made his name in Europe as a leading scientist and astronomer.In the
winter of 1577-1578 a comet, known as the “Great Comet” appeared in the skies. It
was observed by many all over the globe (from the Aztecs in the America’s via
European researchers to the Arabic world, India all the way to Japan). Brahe made
thousands of recordings, some simultaneously done in Denmark (close to
Copenhagen) and Prague. That way, Brahe could establish that the comet was much
beyond the Moon.At the end of his life, Brahe moved to Prague to become the official
imperial astronomer under the protection of Rudolf II, the Holy Roman Emperor. In
the later part of his life, Brahe had Johannes Kepler as his assistant.Kepler was 6 years
old when the Great Comet appeared in the sky. He recorded in his writings that his
mother had taken him to a high place to look at it. At the age of nine, he witnessed a
lunar eclipse in which the Moon is in the Earth shadow, darkening it and turning
quite red. As a child he suffered from smallpox making his vision weak and limited
ability to use his hands. This made it difficult for him to make astronomical
observations. It pushed him to mathematics. But there he was confronted with the
Ptolemaic and the Copernican view on planetary motion. Kepler became a math
professor at the Protestant Stiftsschüle in Graz. He wrote his ideas about the universe,
following the thoughts of Copernicus in a book, that was read by Tycho Brahe. This
brought him into contact with Brahe. In 1600 Kepler and his family moved to Prague
as a consequence of political and religious oppression. He was appointed as assistant
to Brahe and worked with Brahe on a new star catalogue and planetary tables. Brahe
died unexpectedly on October 24th 1601. Two days later, Kepler was appointed as his
successor.Johannes Kepler (1571-1630). From Wikimedia Commons, public
domain.Kepler worked on a heliocentric version of the universe and in the period
1609-1619 published his first two laws. With these, he changed from trying circular
orbits to other closed ones, to arrive at an elliptical one for Mars. That one was in
very good agreement with the Brahe data, much better than had been achieved
before. Kepler realized that the other planets might also be in elliptical orbits. In
comparison with Copernicus he stated: the planetary orbits are not circles with epi-
circles. Instead it are ellipses. Secondly, The sun is not at the center of the orbit, but in
one of the focal points of the ellipse. Thirdly, the speed of a planet is not a
constant.Kepler’s work was not immediately recognized. On the contrary, Galilei
completely ignored it and many criticized Kepler for introducing physics into
astronomy.
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Kepler has formulated three laws that describe features of the orbits of the planets around
the sun.

1. The orbit of a planet is an ellipse with the Sun at one of the two focal points.
2. A line segment joining a planet and the Sun sweeps out equal areas during equal

intervals of time (Law of Equal Areas).
3. The square of a planet’s orbital period is proportional to the cube of the length of

the semi-major axis of its orbit.

Figure 2.175:  Kepler’s 2nd Law of Equal Area.
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= 𝑐𝑜𝑛𝑠𝑡. (2.226)
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It is important to realize, that Kepler came to his laws by -what we would now call- curve
fitting. That is, he was looking for a generic description of the orbits of planets that would
match the Brahe data. He abandoned the Copernicus idea of circles with epi-circles with
the sun in the center of the orbit. Instead he arrived at ellipses with the sun out of the
center, in one of the focal points of the ellipse.

But, there was no scientific theory backing this up. It is purely ‘data-fitting’. Nevertheless,
it is a major step forward in the thinking about our universe and solar system. It radically
changed from the idea that the universe is ‘eternal’, that is for ever the same and build up
of circles and spheres: the mathematical objects with highest symmetry showing how
perfect the creation of the universe is.

Kepler had formulated his laws by 1619 AD. It would take another 60 years before Isaac
Newton showed that these laws are actually imbedded in his first principle approach: all
that is needed is Newton’s second law and his Gravitational Law.

2.4.6 Newton’s theory and Kepler’s Laws
The planets move under the influence of the gravitational force between them and the
sun. We start with inspecting and classifying the force of gravity. Newton had formulated
the Law of gravity: two objects of mass 𝑚1 and 𝑚2, respectively, exert a force on each
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other that is inversely proportional to the square of the distance between the two masses
and is always attractive. In a mathematical equation, we can make this more precise:

⃗𝐹𝑔 = −𝐺𝑚1𝑚2
𝑟2
12

𝑟̂12 (2.227)

In the figure below, the situation is sketched. We have chosen the origin somewhere and
denote te position of the sun and the planet by ⃗𝑟1 and ⃗𝑟2. Gravity works along the vector
⃗𝑟12 = ⃗𝑟2 − ⃗𝑟1. The corresponding unit vector is defined as 𝑟̂12 = ⃗𝑟12

𝑟12
.

Figure 2.176:  The sun and a planet.

Newton realized that he could make a very good approximation. Given that the mass of
the sun is much bigger than that of a planet, the acceleration of the sun due to the
gravitational force of the planet on the sun is much less than the acceleration of the
planet due to the sun’s gravity. For this, we only need Newton’s 3rd law:

𝐹𝑔,𝑠𝑢𝑛𝑜𝑛𝑝𝑙𝑎𝑛𝑒𝑡 = −𝐹𝑔,𝑝𝑙𝑎𝑛𝑒𝑡𝑜𝑛𝑠𝑢𝑛 (2.228)

Hence

𝑚𝑠𝑢𝑛𝑎𝑠𝑢𝑛 = −𝑚𝑝𝑙𝑎𝑛𝑒𝑡𝑎𝑝𝑙𝑎𝑛𝑒𝑡 → 𝑎𝑠𝑢𝑛 =
𝑚𝑝𝑙𝑎𝑛𝑒𝑡

𝑚𝑠𝑢𝑛
𝑎𝑝𝑙𝑎𝑛𝑒𝑡 ≪ 𝑎𝑝𝑙𝑎𝑛𝑒𝑡 (2.229)

Newton concluded, that for all practical purposes, he could treat the sun as not moving.
Next, he took the origin at the position of the sun. And from here on, we can ignore the
sun and pretend that the planet feels a force given by

⃗𝐹 ( ⃗𝑟) = −𝐺𝑚𝑀
𝑟2 𝑟̂ (2.230)

with 𝑀  the mass of the sun and 𝑚 that of the planet. 𝑟 is now the distance from the
planet to the origin and 𝑟̂ the unit vector pointing from the origin to the planet.

First observation: The force is central!

First conclusion: Then the angular momentum of the planet is conserved (is a constant
during the motion of the planet) and the motion is in a plane, i.e. we deal with a 2-
dimensional problem!

Second Observation: The force is of the form ⃗𝐹 ( ⃗𝑟) = 𝑓(𝑟)𝑟̂

Second conclusion: Thus, we do know that a potential energy can be associated with it.
It is a conservative force. This also implies that the mechanical energy of the planet, that
is the sum of kinetic en potential energy, is a constant over time. In other words, there is
no frictional force and the motion can continue forever. This seems to be inline with our
observation of the universe: the time scales are so large that friction must be small.
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2.4.6.1 Constant Angular Momentum: Equal Area Law
The first clue towards the Kepler Laws comes from angular momentum. Let’s consider the
earth-sun system (ignoring all other planets in our solar system). As we saw above,
gravity with the sun pinned in the origin, is a central force and thus

𝑑 ⃗𝑙
𝑑𝑡

= ⃗𝑟 × (−𝐺𝑚𝑀
𝑟2

⃗𝑟
𝑟
) = 0 (2.231)

Thus, ⃗𝑙 = 𝑐𝑜𝑛𝑠𝑡. both in length and in direction. From the latter, we can infer that the
motion of the earth around the sun is in a plane. Hence, we deal with a 2-dimensional
problem.

Figure 2.177:  A free body diagram to help determine the area.

At some point in time, the earth is at location ⃗𝑟 (see red arrow in Figure 21). It has
velocity ⃗𝑣, given by the black arrow. In a small time interval 𝑑𝑡, the earth will move a
little and arrive at ⃗𝑟 + 𝑑 ⃗𝑟 (the green arrow). As the time interval is very short, we can
treat the velocity as a constant and thus write: 𝑑 ⃗𝑟 = ⃗𝑣𝑑𝑡.

Instead of concentrating on the motion of the earth, we focus on the area traced out by
the earth orbit in the interval 𝑑𝑡. That is the yellow area in Figure 21. This area is
composed of two parts: the light yellow part and a smaller, bright yellow part. The light
yellow part has an area 𝐴1 = 1

2ℎ𝑒𝑖𝑔ℎ𝑡𝑥𝑏𝑎𝑠𝑒. If we make 𝑑𝑡 very small, the height is
almost equal to 𝑟 and the base becomes 𝑣⟂𝑑𝑡 and thus 𝐴1 ≈ 1

2𝑟𝑣⟂𝑑𝑡. For the smaller
yellow triangle we have: 𝐴2 = 1

2𝑑𝑟𝑥𝑏𝑎𝑠𝑒 ≈ 1
2(𝑣//𝑑𝑡) ⋅ (𝑣⟂𝑑𝑡) = 1

2𝑣//𝑣⟂𝑑𝑡2.

The total area traced out by the earth orbit during 𝑑𝑡 is thus in good approximation:

𝑑𝐴 = 𝐴1 + 𝐴2 = 1
2
(𝑟𝑣⟂ + 𝑣//𝑣⟂𝑑𝑡)𝑑𝑡 (2.232)

We divide both sides by 𝑑𝑡 and take the limit 𝑑𝑡 → 0:

𝑑𝐴
𝑑𝑡

= (1
2
𝑟𝑣⟂ + 1

2
𝑣⟂𝑣//𝑑𝑡) → 1

2
𝑟𝑣⟂ (2.233)

In stead of 𝑣⟂ we can also write 𝑝⟂
𝑚 :

𝑑𝐴
𝑑𝑡

= 1
2𝑚

𝑟𝑝⟂ (2.234)
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But 𝑟𝑝⟂ is the magnitude of ⃗𝑟 × ⃗𝑝. And that is the magnitude of the angular momentum:
𝑙 = | | ⃗𝑟 × ⃗𝑝 | | = 𝑟𝑝⟂!!!

We know 𝑙 is constant, thus we have found:

𝑑𝐴
𝑑𝑡

= 1
2𝑚

𝑟𝑝⟂ = 𝑙
2𝑚

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.235)

We can easily integrate this equation:

𝑑𝐴
𝑑𝑡

= 𝑙
2𝑚

→ 𝐴(𝑡) = 𝑙
2𝑚

𝑡 + 𝐶 (2.236)

We can set the constant 𝐶 to zero at some point in time 𝑡0 and start counting the increase
of the swept area. But we immediately infer that if we check the swept area between 𝑡
and 𝑡 + Δ𝑡, this will be Δ𝐴 = 𝑙

2𝑚Δ𝑡 regardless of where the earth is in its orbit. In
words: in equal time intervals, the earth sweeps an area that is the same for any position
of the earth. We have established the Equal Area Law!

2.4.6.2 Newton’s theory and Kepler’s Laws - part 2
We have:

• The sun is replaced by a force field originating at the origin. This force field is a
central force.

1. Thus, the angular momentum is conserved.
2. The orbit is in a plane: we deal with a 2-dimensional problem.

• The force is conserved: a potential exists.

Based on these, we will derive Kepler’s laws only using Newtonian Mechanics. This is
easiest in polar coordinates (𝑟, 𝜙). However, in this course we do not deal with these
coordinates. We will thus give a coarse overview of the steps that should be taken.

The first thing we notice, is that the constant angular momentum provides a constraint on
the relation between ⃗𝑟 and ⃗𝑝. This constraint can be used to rewrite the kinetic energy
𝐸𝑘𝑖𝑛 = 1

2𝑚𝑣2 into 𝐸𝑘𝑖𝑛 = 1
2𝑚 ̇𝑟2 + 𝑙2

2𝑚𝑟2 .

What does this mean? The coordinate 𝑟 is the distance from the sun to the earth. Its time
derivative ( ̇𝑟 = 𝑑𝑟

𝑑𝑡 = 𝑣𝑟) is the velocity of the earth away from the sun. This is called the
radial component of the velocity. Figure 22 illustrates this.
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Figure 2.178:  The coordinate 𝑟 is the distance from the sun to the earth. Its time
derivative ( ̇𝑟 = 𝑑𝑟

𝑑𝑡 = 𝑣𝑟) is the velocity of the earth away from the sun.

It is important to realize that ̇𝑟 tells us if we are moving such that we are getting closer to
the sun or further away. But it does not tells us how we move ‘around’ the sun. For that
we need the information of the component of the velocity perpendicular to ⃗𝑟 (the other
dashed vector in the figure).

So, it seems that we are working with incomplete information. And in a sense we do. But
it will turn out to be very useful to understand the physics of the earth’s orbit.

We already saw that in this case gravity is a conservative force. The potential energy is
found by solving 𝑉 (𝑟) = − ∫𝑟

𝑟𝑟𝑒𝑓

⃗𝐹𝑔 ⋅ 𝑑 ⃗𝑟. We can plug in ⃗𝐹𝑔 = −𝐺𝑚𝑀
𝑟2 𝑟̂. Thus only the

radial coordinate is of importance in the inner product in the integral. Furthermore, we
will use as reference boundary: ∞. Thus, the potential energy is:

𝑉 (𝑟) = − ∫
𝑟

𝑟𝑟𝑒𝑓

⃗𝐹𝑔 ⋅ 𝑑 ⃗𝑟

= 𝐺𝑚𝑀 ∫
𝑟

∞

𝑑𝑟
𝑟2

= −𝐺𝑚𝑀
𝑟

(2.237)

Thus, energy conservation can be written as:

1
2
𝑚(𝑣2

𝑥 + 𝑣2
𝑦) − −𝐺𝑚𝑀

𝑟
= 𝐸0 = 𝑐𝑜𝑛𝑠𝑡 (2.238)

As expected: we have an equation with two unknowns (𝑥(𝑡), 𝑦(𝑡)). Once we solved the
problem, we will thus have the coordinates of the planet’s trajectory as a function of time.
However, we will not do that. Reason: it is complicated and we don’t need it! What we
need is to find what kind of figure the trajectory is.

Our first step is to bring the number of unknowns in the energy equation down from two
to one. For that, we use 𝐸𝑘𝑖𝑛 = 1

2𝑚 ̇𝑟2 + 𝑙2
2𝑚𝑟2 .

1
2 ̇𝑟2 + 𝑙2

2𝑚𝑟2 − −𝐺𝑚𝑀
𝑟

= 𝐸0 = 𝑐𝑜𝑛𝑠𝑡 (2.239)

Now we have an equation with only one unknown 𝑟(𝑡).

We can interpret this in a different way: the second term, with the angular momentum,
originates from kinetic energy, but now looks like a potential energy. And that is exactly
what we are going to do: treat it as a potential energy.

Hence, we can first inspect the global features of our energy equation. Notice that the
gravity potential energy is an increasing function of the distance from the planet to the
sun (located and fixed in the origin). This shows that the underlying force attractive is.
The new part, coming from angular momentum, on the other hand is a decreasing
function of distance. Thus, the related force is repelling.

We can make a drawing of the energy. See Figure 23.
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Figure 2.179:  Energies related to our planet, with a minimum around 1.5𝑒11𝑚.

The blue line is the potential energy of gravity. The red one stems from the kinetic energy
associated with the angular velocity. The black line is the sum of the two, a kind of
effective potential:

𝑈𝑒𝑓𝑓 = 𝑙2

2𝑚𝑟2 − −𝐺𝑚𝑀
𝑟

(2.240)

We see, that the energy can not be just any value: the kinetic energy of our quasi-one-
dimensional particle (1

2𝑚 ̇𝑟2) can not be negative and the total potential energy has,
according to Figure 23 a clear minimum. The total energy can not be below this
minimum. On the other hand: there is no maximum.

Case 1: Effective potential = minimal

Suppose, we would prepare the system such that its total energy was equal to the
minimum of the black line, i.e. of the total potential energy. Then, of course, via the
arguments we have given above this is only possible if the kinetic energy is zero.

𝐸𝑘𝑖𝑛 + 𝑈𝑒𝑓𝑓(𝑟) = 𝑈𝑒𝑓𝑓,𝑚𝑖𝑛 ⇒ 𝐸𝑘𝑖𝑛 = 0 (2.241)

This implies that ̇𝑟 = 0:

𝐸𝑘𝑖𝑛 = 1
2
𝑚 ̇𝑟2 = 0 → ̇𝑟 = 0 (2.242)

At first glance, this seems strange: ̇𝑟 = 0 suggests that the earth doesn’t move, it has
zero velocity. That would indeed be strange: after all we are dealing here with a planet
that is attracted via gravity towards the sun. How can it possible have zero velocity?

We are about to make a mistake: ̇𝑟 = 0 doesn’t mean that the velocity is zero. It means
that 𝑟(𝑡) = 𝑐𝑜𝑛𝑠𝑡. The planet still has a velocity perpendicular to its position vector ⃗𝑟.
Earlier we found: 𝑙 = 𝑚𝑟𝑣⟂ = 𝑐𝑜𝑛𝑠𝑡. We now have, since
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̇𝑟 = 0 → 𝑟 = 𝑟0 = 𝑐𝑜𝑛𝑠𝑡, 𝑙 = 𝑚𝑟0𝑣⟂ = 𝑐𝑜𝑛𝑠𝑡 → 𝑣⟂ = 𝑙
𝑚𝑟0

= 𝑐𝑜𝑛𝑠𝑡 (2.243)

Thus, if a planet orbits its sun such that its (pseudo-)potential 𝑈𝑒𝑓𝑓 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚,
then its orbit is a circle of radius 𝑟0 that corresponds to the minimum in 𝑈𝑒𝑓𝑓  and the
planet has a velocity that is constant in magnitude 𝑣 = 𝑙

𝑚𝑟0
.

Case 2: Effective potential < Total energy < 0

Next, we consider a case where the total energy of the planet has a value between the
minimum of the curve of the effective potential and 0. Call the value of the energy 𝐸2.

From Figure 24 we see that the planet will now be confined to an area where the
effective potential is either equal to or smaller than this particular value 𝐸2

Figure 2.180:  Total energy between 0 and minimum of effective potential.

Thus, the trajectory is confined between 𝑟 = 𝑟𝑎 and 𝑟 = 𝑟𝑏. At both these end points,
the planet will have zero radial velocity: ̇𝑟𝑎 = ̇𝑟𝑏 = 0. However, as before, the planet
will still have angular momentum and thus still have a non-zero velocity. The planet
will travel in the (𝑥, 𝑦)-plane between 𝑟 = 𝑟𝑎 and 𝑟 = 𝑟𝑏. How? We don’t know yet.

N.B. Do realize, that the velocity is for this case not a constant. We already have
established that it is linked to the angular momentum (which is a constant) and the
distance to the origin.

Thus, if the planet is closer to 𝑟𝑎 it moves faster than close to 𝑟𝑏. But it can not escape
from 𝑟𝑎 < 𝑟(𝑡) < 𝑟𝑏.

Case 3: Total energy > 0

Finally, we take the case that the total energy of the planet is positive, say a value of
𝐸3 in Figure 25. Now we see that the planet can approach the sun, but not closer than
a distance 𝑟 = 𝑟𝑐. The planet is attracted to the sun, but after reaching the closest
distance 𝑟 = 𝑟𝑐 it will move away and eventually reach infinity. Again note: at 𝑟 = 𝑟𝑐,
the planet does have a non-zero velocity.
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Figure 2.181:  Total energy larger than 0.

2.4.6.3 Ellipsoidal orbits
We are left with the task of showing that planets ‘circle’ the sun in an ellipse. From the
above, we now know that this must mean that the total energy is smaller than zero: 𝐸 <
0. We will not go over the details of the derivation, but leave that for another course.

The outcome of the analysis would be the following expression for the orbit in case of an
ellipse:

(𝑥 + 𝑒𝑎)2

𝑎2 + 𝑦2

𝑏2 = 1 (2.244)

Figure 2.182:  Ellips in Cartesian coordinates.

This is an ellipse with semi major and minor-axis 𝑎 and 𝑏, respectively. The center of the
ellipse is located at (−𝑒𝑎, 0). Note that the sun is in the origin and that seen from the
center of the ellipse, the origin is at one of the focal points of the ellipse. Consequently,
the orbit is not symmetric as viewed from the sun. We notice this on earth: the summer
and winter (when the sun is closest respectively furthest from the sun) are not symmetric,
even if we take the tilted axis of the earth into account.

The half and short long axis are given by:

𝑎 = 𝛼
1 − 𝑒2 = 𝐺𝑀𝑚

2 | 𝐸 |
(2.245)

𝑏 = 𝑎𝛼 = 𝑙2

2𝑚 | 𝐸 |
(2.246)

with

𝑒 = √1 + 2𝐸𝑙2
(𝐺𝑀𝑚)2𝑚

(2.247)

and
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𝛼 ≡ 𝑙2

2𝐺𝑀𝑚2 (2.248)

This type of curve is know as the conic sections. That is, they can be found by
intersecting a cone with a plane. See the animation below, where a plane is at various
positions and at various angles intersecting a cone.

Figure 2.183:  Conic sections animation created by Sara van der Werf, used with
permission.

Note that in the definition of 𝑒, the total energy of the system plays a role. This energy
can be negative (see Figure 23). The minimum value of the effective potential energy is
easily computed. It is 𝑈𝑒𝑓𝑓,𝑚𝑖𝑛 = −1

2
(𝐺𝑚𝑀)2𝑚

𝑙2  and is realized when the planet is at a
distance 𝑟 = 𝑙2

𝐺𝑀𝑚2 . For this case we have 𝑒 = 0 and the planet is moving in a circle
around the sun, as we already argued above.

For 0 ≤ 𝑒 < 1 the orbit is an ellipse as Kepler already had postulated (for these values of 𝑒
the orbit is a closed one).

For 𝑒 = 1, the orbit is a parabola: the object will eventually move to infinity where it has
exactly zero radial velocity.

Finally, for 𝑒 > 1 the trajectory is a hyperbola with the planet again moving to infinity.

Conclusion: according to Newton’s laws of mechanics, combined with the
Gravitation force proposed by Newton, planets must move in ellipses around
their star.

This holds for our solar system, but for any other star with planets as well. Research has
shown that there are hundreds of solar systems out in the universe with thousands of
planets moving around their star. See e.g. https://exoplanets.nasa.gov/

2.4.6.4 Kepler 3
We are left with proving Kepler’s third law:

𝑇 2
𝐴

𝑅3
𝐴

= 𝑇 2
𝐵

𝑅3
𝐵

= 𝑐𝑜𝑛𝑠𝑡 (2.249)
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Now that we know the orbit, this is not difficult. We concentrate on the motion during
one lapse (one ‘year’). From Keppler’s 1𝑠𝑡 law we know that the area a planet sweeps out
of its ellipse is given by

𝐴(𝑡) = 𝑙
2𝑚

𝑡 + 𝐶 (2.250)

where 𝐶 is an integration constant. Furthermore, this way of writing makes that the area
swept keeps increasing: after one round along the ellipse, we simply keep counting.

However, we can easily back out what happens after exactly one round, or one ‘year’. The
total area swept is then, of course, the area of the ellipse itself, that is: in one year (time
𝑇 ) the area swept is 𝜋𝑎𝑏. Hence we conclude:

𝐴(𝑇 ) = 𝜋𝑎𝑏 ⇒ 𝜋𝑎𝑏 = 𝑙
2𝑚

𝑇 (2.251)

If we put back what we found for 𝑎 and 𝑏, we get

𝑇 2

𝑎3 = 4𝜋2

𝐺𝑀
(2.252)

Thus, indeed Kepler was right. Moreover, we note that the constant is only depending on
the mass of the sun. The same law will hold for other solar systems, but with a different
constant.

In Figure 28 Kepler’s third law is shown for our solar system. The red data points are
based on the measured ‘year’ of each planet and the distance to the sun. The blue line is
the prediction from Newton’s theory.

Figure 2.184:  Kepler 3 for our solar system.

Haley’s comet

The planets aren’t the only objects that move around the sun. Several icy, rocky
smaller objects are trapped in a closed orbit around the sun. These objects, comets
from the Greek word for ‘long-haired star’, are left-overs from when our solar system
was formed, some 4.6 billion years ago. There are many comets in our solar system.
More than 4500 have been identified, but there are probably much more. Usually the
orbit of a comet, if it’s a closed one, has a high eccentricity (i.e. close to 1). Moreover,
their orbital period may be very long.
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One of the best visible comets is Haley’s comet. However, its orbital period is about 75
years. It last appeared in the inner parts of the Solar System in 1986. So, you will have
to wait until mid-2061 to see it again.

Figure 2.185:  Trajectory of Haley’s comet. From Wikimedia Commons, licensed under
CC-BY 4.0.

2.4.7 Speed of the planets & dark matter
Starting from Kepler 3, we can compute the orbital speed of a planet around the sun

𝑇 2 = 4𝜋2

𝐺𝑀
𝑎3

𝜔2 = 𝐺𝑀
𝑎3 , 𝑇 = 2𝜋

𝜔
, 𝜔 = 𝑣

𝑟
, 𝑎 ≈ 𝑟

⇒ 𝑣 = √𝐺𝑀
𝑟

(2.253)

Indeed if we measure the speed of the planets in the solar system this prediction holds,
the velocity drops with the distance from the sun as ∝ 𝑟−1/2 (see figure). As 𝑀  we use
the mass of the sun here.
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Figure 2.186:  From LibreTexts Physics, licensed under CC BY-NC-SA 4.0.

The distance is measured in Astronomical Units [AU], the distance from the earth to the
sun (about 8.3 light minutes). Note that the earth is moving with an unbelievable 30 km/s,
that is 10⁵ km/h! Do you notice any of that? We will use this motion later with the
Michelson-Morley experiment.

If we plot the same speed versus distance curve not for the planets in our solar system,
but for stars orbiting the center of our galaxy, the milky way, then the picture looks very
different. The far away stars orbit at a much higher speed than expected and the form of
the found curve does not match ∝ 𝑟−1/2.

Figure 2.187:  Adapted from Wikimedia Commons, licensed under CC-SA 3.0.

This mismatch is not understood to this day! The mass 𝑀  here is calculated from the
visible stars and the supermassive black holes at the center of the galaxy. But even if the
mass is calculated wrongly, the shape of the dependency does not match. It turns out, this
mismatch is observed in all galaxies! Apparently the law of gravity does not hold for large
distances or there must be extra mass that increases the speed that we do not see. This
mismatch has lead to the postulation of dark matter and an alternative formulation for the
laws of gravity. This is the most disturbing problem in physics today; second is probably
the interpretation of measurement in quantum mechanics (collapse of the wave function/
Kopenhagen interpretation of Quantum Mechanics; multiverse theories).

The majority of all matter in the universe is believed to be dark. And we have no clue
what it could be! Most scientist even think it must be non-baryonic, that is, other stuff
than our well-known protons or neutrons. It remains most confusing.

The usual distance unit for distances in astronomy outside the solar system is not light
years (ly), but parsec [pc], or kpc, or Mpc. One parsec is about 3.3 ly (or 10¹³ km). Note:
stars visible to the eye are typically not more than a few hundred parsec away. The Milky
Way is perfectly visible to the naked eye as a band/stripe of “milk” sprayed over the night
sky. But you cannot see it anywhere close to Delft, there is much too much light from
cities and greenhouses. Go to Scandinavia in the winter (“wintergatan”) or any place
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remote where there are few people. The reason you see a “band” in the night sky, is that
the Milky Way is a spiral galaxy, sort of pancake shaped, and you see the band in the
direction of the pancake.
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2.4.8 Examples, exercises and solutions
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2.5 Conservation Laws / Galilean Transformation
In the previous chapters, we have seen that from Newton’s three laws, we can obtain
conservation laws. That means, under certain conditions (depending on the law), a
specific quantity can not change.

These conservation equations are very important in physics. They tell us that no matter
what happens, certain quantities will be present in the same amount: they are conserved.

Conservation of energy follows from the concept of work and potential energy.
Conservation of momentum is a direct consequence of N2 and N3, as we will see below.
And finally, under certain conditions, angular momentum is also conserved. In this
chapter we will summarize them. The reason is: their importance in physics. These laws
are very general and in dealing with physics questions they give guidance and very strict
rules that have to be obeyed. They form the foundation of physics that can not be
violated. They provide strong guidance and point at possible directions to look for when
analyzing problems in physics.

2.5.1 Conservation of Momentum
Consider two particles that mutually interact, that is they exert a force on each other. For
each particle we can write down N2:

𝑑𝑝⃗1
𝑑𝑡 = ⃗𝐹21

𝑑𝑝⃗2
𝑑𝑡 = ⃗𝐹12 = − ⃗𝐹21

} → 𝑑
𝑑𝑡

( ⃗𝑝1 + ⃗𝑝2) = 0 ⇒ ⃗𝑝1 + ⃗𝑝2 = 𝑐𝑜𝑛𝑠𝑡 (2.254)

The total (linear) momentum is conserved if only internal forces are present; “action-
reaction pairs” always cancel out.
This law has no exception: it must be obeyed at all times. The total momentum is
constant, momentum lost by one must be gained by others.

2.5.2 Conservation of Energy
As we have seen when deriving the concept of potential energy, for a system with
conservative forces the total amount of kinetic and potential energy of the system is
constant. We can formulate that in a short way as:

∑ 𝐸𝑘𝑖𝑛 + ∑ 𝑉 = 𝑐𝑜𝑛𝑠𝑡 (2.255)

Again: energy can be redistributed but it can not disappear nor be formed out of nothing.

If non-conservative forces are present, the right hand side of the equation should be
replaced by the work done by these forces.

∑ 𝐸𝑘𝑖𝑛 + ∑ 𝑉 = ∑ 𝑊 (2.256)

In many cases this will lead to heat, a central quantity in thermodynamics and another
form of energy. The “loss” of energy goes always to heat. With this ‘generalization’ we
have a second law that must always hold. Energy can not be created nor destroyed. All it
can do is change its appearance or move from one object to another.

2.5.3 Conservation of Angular Momentum
Also angular momentum can be conserved. According to its governing law 𝑑 ⃗𝑙

𝑑𝑡 = ⃗𝑟 × ⃗𝐹  it
might seem that we can for two interacting particles again invoke N3 “action = -reaction”
and the terms with the forces will cancel out. But we need to be a bit more careful, as
cross products are involved which are bilinear (a type of mathematical function or
operation that is linear in each of two arguments separately, but not necessarily linear
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when both are varied together). So, let’s look at the derivation of “conservation of angular
momentum” for two interacting particles:

𝑑 ⃗𝑙1
𝑑𝑡 = ⃗𝑟1 × ⃗𝐹21

𝑑 ⃗𝑙2
𝑑𝑡 = ⃗𝑟2 × ⃗𝐹12 = − ⃗𝑟2 × ⃗𝐹21

} → 𝑑
𝑑𝑡

( ⃗𝑙1 + ⃗𝑙2) = ( ⃗𝑟1 − ⃗𝑟2) × ⃗𝐹21 (2.257)

As we see, this is only zero if the vector ⃗𝑟1 − ⃗𝑟2 is parallel to the interaction forces (or
zero). We called this a central force. Luckily, in many cases the interaction force works
over the line connecting the two particles (e.g. gravity). In those cases, the angular
momentum is conserved. Mathematically we can write this as:

𝑖𝑓 ⃗𝐹21 | | ( ⃗𝑟1 − ⃗𝑟2) ⇒  ⃗𝑙1 + ⃗𝑙2 = 𝑐𝑜𝑛𝑠𝑡 (2.258)

Conservation of Mass

Within the world of Classical Mechanics, mass is also a conserved quantity. Whatever
you do, what ever the process the total mass in the system stays the same. We can not
create nor destroy mass. From more modern physics we know that this is not true. On
the one hand we can destroy mass. For instance, when an electron and a positron
collide, they can annihilate each other resulting in two photons, i.e. ‘light particles’
that do not have mass. Similarly, we can create mass out of light. This is the inverse of
the annihilation: pair production. If we have a photon of at least ), then -under the
right conditions- an electron-positron pair can be created.Moreover, Albert Einstein
showed that mass and energy are equivalent - expressed via his famous equation . His
theory of Relativity showed us that in collisions at extreme velocities mass is not
conserved: it can both be created or disappear. Rephrased: it is actually part of the
energy conservation, mass is in that context just a form of energy.

Emmy Noether, symmetries and conservation laws

We discussed the conservation laws as consequences of Newton’s Laws. That in itself
is ok. However, there is a deeper understanding of nature that leads to these
conservation laws. And from the conservation laws we can go to Newton’s Laws, thus
‘reversing the derivations’ and starting from this new, different way of looking at
nature.What is it and how do we know? To answer this question we have to resort to
Emmy Noether, a German mathematician. Noether made top contributions to abstract
algebra. She proved, what we now call, Noether’s first and second theorems, which
are fundamental in mathematical physics. Noether is often named as one of the best if
not the best female mathematicians ever lived. Her work on differential invariants in
the calculus of variations has been called “one of the most important mathematical
theorems ever proved in guiding the development of modern physics”.Amalie Emmy
Noether (1882-1935). From Wikimedia Commons, public domain.Noether shows, that
if a dynamic system is invariant under a certain transformation, that is it has a
symmetry, then there is a corresponding quantity that is conserved. Ok, pretty
abstract. What does it mean, any examples? Yes! Here is one.In physics we believe
that it does not matter if we do an experiment now and repeated it exactly under the
same conditions an hour later, the outcome will be the same. Or rephrased: if we
translate it in time, the outcome is the same; the laws of physics are invariant. This is
in mathematical terms a symmetry, a symmetry with respect to time. Noether’s
theorem then shows, that there is a conserved quantity and this quantity is energy.
Hence, based on the idea that time itself has no effect on physical laws, we
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immediately arrive at conservation of energy.Second example: we also believe that
place or position in the universe doesn’t matter. The physical laws are not only
always the same (time invariance), they are also the same everywhere (space
invariance). From this symmetry, via Noether’s work, we immediately get that
momentum is a conserved quantity. Thus, these two invariances or symmetries -time
and space - provide us directly with conservation of energy and momentum and from
that we could easily derive Newton’s second and third law. Much of modern physics
is now built on the ideas put forward by Emmy Noether. That goes from quantum
mechanics to quarks to string theory.

2.5.4 Galilean Transformation
There is one important element of Classical Mechanics that we have to add: for which
type of observer do Newton’s Laws hold? The original thought was: for inertial observers.
These are observers that are at rest with respect to an inertial frame of reference.

But this merely shifts the question to: what is an inertial frame of reference? One possible
answer is: an inertial frame of reference is a frame in which Newton’s Laws hold. That is:
a particle on which, according to an observer in such a frame, no net force is acting will
keep moving at a constant velocity.

All inertial frames of reference move at a constant velocity with respect to each other.
They can not accelerate. To picture what it means, an inertial frame of reference or an
inertial observer, we sometimes use the idea that such a frame or observer moves at a
constant velocity with respect to the ‘fixed’ stars. And indeed, for a long time people
believed that the stars were fixed in space. But from more modern times we do know, that
this is not the case: stars are not fixed in space nor do they move at a constant velocity.

Later in the study of Classical Mechanics, we will see, that it is possible to do without the
restriction that Newton’s Law strictly speaking only hold in inertial frames. But for now,
we will stick to inertial frames and look at the ‘communication’ between two observers in
two different inertial frames.

An important requirement of any physical law is that it looks the same for all inertial
observers. That doesn’t mean that the outcome of using such a law is the same. As a
trivial example, take two inertial observers S and S’. According to S, S’ moves at a
constant velocity, 𝑉 , in the 𝑥-direction. S’ observes a mass 𝑚 that is not moving in the
frame of reference of S’. For simplicity, we will assume that each observer is in its own
origin.

S’ rightfully concludes, based on Newton’s 1𝑠𝑡 law that no force is acting on 𝑚. S agrees,
but doesn’t conclude that 𝑚 is at rest. This is trival: both observers can use Netwon’s
second law which for this case states that 𝑑𝑝⃗

𝑑𝑡 = 0 → ⃗𝑝 = 𝑐𝑜𝑛𝑠𝑡 → ⃗𝑣 = 𝑐𝑜𝑛𝑠𝑡. But the
constant is not the same in both frames.

To make the above loose statements more precise. We have two coordinates systems CS
and CS’. The transformation between both is given by a translation of the origin of S’
with respect to that of S.
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2.5.4.1 Communication Protocol
We need to have a recipe, a protocol that translates information from 𝑆′ to 𝑆 and vice
versa.

This protocol is called the Galilean Transformation between two inertial frames, 𝑆 and 𝑆′.

According to observer 𝑆, 𝑆′ is moving at a constant velocity 𝑉 . Both observers have
chosen their coordinate system such that 𝑥 and 𝑥′ are parallel. Moreover, at 𝑡 = 𝑡′ = 0,
the origins 𝑂 and 𝑂′ coincide. The picture below illustrates this.

Figure 2.189:  Two inertial observers S and S’ and their coordinate systems.

Consider for simplicity a 2D point 𝑃  with coordinates (𝑥′, 𝑦′) and time 𝑡′ for 𝑆′. What
are the coordinates according to 𝑆? First of all: in classical mechanics, there is only one
time, that is: 𝑡 = 𝑡′. Until the days of Einstein this seemed self evident; we now know that
nature is more complex.

For the spatial coordinates, we see immediately: 𝑦 = 𝑦′. And for the 𝑥-coordinate 𝑆 can
do the following. To go to the 𝑥-coordinate of 𝑃 , first 𝑆 goes to the origin 𝑂′ of 𝑆′. 𝑂′ is
a distance 𝑉 𝑡 from 𝑂. Thus, the distance to 𝑃  along the 𝑥-axis is 𝑉 𝑡 + 𝑥′. If we sum the
above up, we can formulate the relation between the coordinate system of the two
observers. This transformation is the Galilean Transformation, or GT for short.

Galilean Transformation

𝑥′ = 𝑥 − 𝑉 𝑡
𝑦′ = 𝑦
𝑡′ = 𝑡

(2.259)

2.5.4.2 Velocity is relative; acceleration is absolute
A direct consequence of the Galilean Transformation is that velocity is observer-
dependent (not surprising), but for observers in inertial frames, observed velocities differ
by a constant velocity vector.

In what follows we will derive the relations between velocity and acceleration as
observed by S and S’. Note that we need to be precise in our notation: 𝑆′ denotes
quantities with a prime (‘), but 𝑆 does not. This is obvious for the coordinates as 𝑆 uses 𝑥
whereas 𝑆′ will write 𝑥′. It is, however, also wise to use primes on the velocity: 𝑆 will
denote the 𝑥-component as: 𝑣𝑥 = 𝑑𝑥

𝑑𝑡 . So, 𝑆′ will note denote velocity by 𝑣, but by 𝑣′.
Hence 𝑆′ will write 𝑣′𝑥′ = 𝑑𝑥′

𝑑𝑡′ . Now, obviously, 𝑡′ = 𝑡 so we could drop the prime on
time, but it is handy to do that in the second step.

First we look at velocity.
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𝑣′𝑥′ ≡ 𝑑𝑥′
𝑑𝑡′

⇒ 𝑣′𝑥′ = 𝑑(𝑥 − 𝑉 𝑡)
𝑑𝑡

= 𝑣𝑥 − 𝑉

𝑣′𝑦′ ≡ 𝑑𝑦′
𝑑𝑡′

⇒ 𝑣′𝑦′ = 𝑑𝑦
𝑑𝑡

= 𝑣𝑦

(2.260)

Thus indeed velocity is ‘relative’: different observers find different values, but they do
have a simple protocol to convert information from the other colleague to their own
frame of reference.

Secondly, we look at acceleration.

𝑎′𝑥′ ≡ 𝑑𝑣′𝑥′
𝑑𝑡′

⇒ 𝑎′𝑥′ = 𝑑(𝑣𝑥 − 𝑉 )
𝑑𝑡

= 𝑎𝑥

𝑎′𝑦′ ≡
𝑑𝑣′𝑦′

𝑑𝑡′
⇒ 𝑎′𝑦′ =

𝑑𝑣𝑦

𝑑𝑡
= 𝑎𝑦

(2.261)

So, we conclude: acceleration is the same for both observers.

Consequently, N2 holds in both inertial systems if we postulate that 𝑚′ = 𝑚. In other
words: mass is an object property that does not depend on the observer.

Thus, two observers, each with its own inertial frame of reference, will both see the same
forces: 𝐹 = 𝑚𝑎 = 𝑚′𝑎′ = 𝐹′.

This finding is stated as: Newton’s second law is invariant under Galilean
Transformation. Invariant means that the form of the equation does not change if you
apply the Galilean coordinate transformation. Later we will expand this to Lorentz
invariant transformation in the context of special relativity. The concepts of invariance is
very important in physics as hereby we can formulate laws that are the same for
everybody (loosely speaking).
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2.5.5 Exercises, examples & solutions

2.5.5.1 Worked Example
In class you have seen the Superballs example. Let’s dive more deep into what is
happening.

Figure 2.190:  Watch the superballs again.

Consider Figure 2, if you let a smaller and a larger ball drop together, stacked on top of
each other, the smaller ball will bounce back much stronger (higher) than if you let the
small ball fall without stacking it on the lager ball. How can that happen?

Figure 2.191:  Bouncing balls.

To explain this we use the Galilean Transformation (GT). Consider the following situation
depicted in Figure 2.

• 1 Both balls are falling with velocity ⃗𝑣 towards the ground.
• 2a The larger ball just hit the ground. As the mass of the ground is much larger than

that of the large ball, it is (elastically) reflected, i.e. the direction of the velocity is
reversed but the magnitude stays the same. The small ball is still moving downwards
with ⃗𝑣.

• 2b We apply a GT of the observer (yellow star) from the ground to an observer
moving with the larger ball. The observer moving with the larger ball sees the
smaller ball moving with 2 ⃗𝑣 towards it.

• 3a The smaller ball hits the larger ball and is reflected due to its smaller mass. In the
frame of the observer on the larger ball, the smaller ball now moves with 2 ⃗𝑣 away
from it.

• 3b We apply a GT of the observer (yellow star) from the larger ball back to an
observer on the ground. For the observer on the ground the larger ball has velocity ⃗𝑣
upwards from 2a, therefore the smaller ball has velocity 3 ⃗𝑣 upwards.

The smaller ball has now velocity 3 ⃗𝑣 instead of ⃗𝑣 if you drop it without the larger ball.
NB: If you would use three balls instead of two, the third ball would have a velocity of 7 ⃗𝑣
using the same reasoning as above.
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Figure 2.192:  Bouncing of three (super)balls.

How much higher does the smaller ball fly with velocity 3 ⃗𝑣 compared to ⃗𝑣?

Answer
We equate the kinetic energy when the ball is just reflected with the potential energy
when the ball reached it maximal height before falling back.

1
2
𝑚𝑣2 = 𝑚𝑔ℎ ⇒ ℎ = 𝑣2

2𝑔
(2.262)

Therefore the ball with 3𝑣 flies 9 times higher.

What is very fishy about this whole outcome?
In situation 1) the kinetic energy is 12𝑚𝑠𝑣2 + 1

2𝑚ℓ𝑣2, but in situation 3b) it is 12𝑚𝑠(3𝑣)2 +
1
2𝑚ℓ𝑣2 while the potential energy is zero in both cases. This clearly does not add up! But
energy must be conserved under all circumstances!

The conclusion is, that we did make an approximation and did not solve the energy and
momentum conservation equations for elastic collisions. Even for the case 𝑀 ≫ 𝑚 there
is some momentum transfer. If you solve for the velocity of 𝑚 after the collision with 𝑀 ,
you obtain

𝑣′ =
𝑚
𝑀 − 1
𝑚
𝑀 + 1

𝑣 (2.263)

For 𝑀 ≫ 𝑚 you indeed see 𝑣′ = −𝑣. Thus the smaller ball will have a smaller velocity
than reasoned above and the larger ball with also have a smaller velocity (in the
experiment you can clearly notice that it does not fly as high as when it drops without the
small ball on top). In real life, the balls also deform which makes the collision inelastic.

In a later chapter we will deal with collisions and pay attention to this limit 𝑀 ≫ 𝑚 in
much more detail.

2.5.5.2 Examples

Example: 8.1

Consider yourself biking at a constant velocity on an unlikely day with zero wind.
Still, you experience a frictional force from the air, with the following observation: the
faster you bike, the larger this force. An experimentalist is trying to measure the
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friction force of the air and relate it to your velocity. She finds that, by and large, these
forces turn out to scale with the square of your velocity 𝑣𝑏

𝐹𝑓 ∝ 𝑣2
𝑏 (2.264)

Figure 2.193:  Air resistance on cyclist.

Understanding the Galilean transformation, you immediately see that this can’t be
correct. In your frame of reference, your velocity is zero. And thus, the friction force
would be zero. But that cannot be true: both observers should see the same forces.
What you see is that the air is blowing at a speed 𝑣𝑎𝑖𝑟 − 𝑣𝑏 past you. And indeed, the
faster you bike, according to the experimentalist, the faster you see the air moving
past you: velocity is relative.

You quickly realize that a proper description of the air friction must depend on the
relative velocity between you and the air. Relative velocities are invariant under
Galilean transformation:

𝐹𝑓 ∝ (𝑣𝑏 − 𝑣𝑎𝑖𝑟)
2 (2.265)

Example: 8.2

Riding a bike while it rains. You have done this hundreds of times. Your front gets
soaked, while the backside of your coat stays dry. Or if you have a passenger on your
carrier he/she will not get wet, while you take all the water. From a GT to the
reference frame of the biker it is obvious why this is the case. The rain is not falling
straight from the sky, but at an angle towards him.

Figure 2.194:  Riding a bike in the rain.

NB: For Dutch bikers you have had this experiences with head wind and rain all your
life.

2.5.5.3 Demo
A ball is bouncing at a wall. The mass of the wall is much greater than that of the ball. So,
acceleration of the wall or changes in momentum of the wall can be ignored.
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On the left side, we see this from the perspective of an observer, S, standing next to the
wall. The right side shows what observer S’, who is traveling with the ball as it moves
towards the wall, sees. Notice, that both S and S’ are inertial observers. That is, they keep
their velocity and are no part of the collision. What would Galilei say?

Figure 2.195:  Ball bouncing at a wall.

Exercise 2.196: 🌶

A train is passing a station at a constant velocity 𝑉 . At the platform, an observer 𝑆
sees that in the middle of the train (train length 2𝐿), at 𝑡 = 0 an object is released with
a constant velocity 𝑢. The object moves towards the back of the train and, at some
point in time, will hit the back.

Inside the train, observer 𝑆′ sees the same phenomenon. Show that both find the same
time for the object hitting the back of the train.

Exercise 2.198: 🌶

A point particle of mass 𝑚 is sitting on a horizontal frictionless table. Gravity is acting
in the vertical downward direction.
According to your observation, 𝑚 has zero velocity. But you see the table moving at a
velocity −𝑣 in the negative 𝑥-direction. The table doesn’t stay flat, but has a bump of
height 𝐻 . What will happen to 𝑚?
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Exercise 2.200: 🌶

Finally, it is winter. And this time, there is lots of fresh snow! You get engaged in a
great snowball fight. Your opponent has run out of ‘ammunition’ and runs away. She
is at a distance 𝐿 = 2m when she starts running at a speed of 5m/s. You throw your
last snowball at her at a speed of 10m/s.
Determine when and where the snowball hits her. Do that three times:

• Your perspective;
• Your opponent’s perspective;
• The snowballs perspective.

Next, use the Galilei transformation and show that you could have used your
perspective and GT to find the data for the other two perspectives.
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Solution 2.201: Solution to Exercise 1

First we make a new sketch, now showing the two observers 𝑆 and 𝑆′ and their axis.
We have made the velocity of the object red, the color of 𝑆. And we have given the
coordinates of the front and back of the train in grey as these are specified according
to 𝑆′. We do this, as it is is crucial to realize that we have ‘mixed’ information.

The velocity of the object is 𝑢 according to 𝑆. The observer in the train, 𝑆′, sees a
different velocity.
The observer in the train will denote the position of the front of the train by 𝑥𝑓 ′ = 𝐿
and of the back 𝑥𝑏′ = −𝐿. Both are, according to 𝑆′, fixed values. But 𝑆 will see that
differently.

According to 𝑆′, the object moves with velocity 𝑢′ = 𝑢 − 𝑉 . Note that this is a
negative value, otherwise the object will not hit the back of the train.

𝑆′ will describe the trajectory of the object by: 𝑥′(𝑡) = 𝑥′0 + 𝑢′𝑡 with 𝑥′0 = 0. Thus,
the object will hit the back of the train at:

𝑥′(𝑇 ′) = −𝐿 → 𝑢′𝑇 ′ = −𝐿 → 𝑇′ = 𝐿
−𝑢′

(2.266)

What does 𝑆 observe? It will write for the trajectory of the object 𝑥𝑜(𝑡) = 𝑢𝑡 (where
we used that the object was released in the middle of the train at 𝑡 = 0 and both
observers chose that as their origin).
According to 𝑆 also the back of the train is moving. It follows a trajectory 𝑥𝑏 = −𝐿 +
𝑉 𝑡, since at 𝑡 = 0 the back of the train was at position 𝑥 = −𝐿 according to 𝑆. The
two will collide when

𝑥𝑜(𝑇 ) = 𝑥𝑏(𝑇 ) → 𝑢𝑇 = −𝐿 + 𝑉 𝑇 → 𝑇 = 𝐿
𝑉 − 𝑢

(2.267)

Hence we have 𝑇  and 𝑇 ′ as times of collision. But we already found 𝑢′ = 𝑢 − 𝑉 . If we
substitute this in 𝑇 ′ we get

𝑇 ′ = 𝐿
−𝑢′

= 𝐿
𝑉 − 𝑢

= 𝑇 (2.268)

Thus, indeed both observers see the collision at the same moment.

Sneak Preview: much to our surprise, when we enter the world of Special Relativity,
this will no longer be the case!
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Solution 2.203: Solution to Exercise 2

The particle will ‘collide’ with the bump. This might cause the particle to start moving
to the left. How to analyse this situation?

Perhaps it is easier when we view this from the point of view of an observer moving
with the table.

Now we have a situation of a particle moving over a friction less table with velocity 𝑣.
If we use conservation of energy, we can write down:

1
2
𝑚𝑢2 + 𝑚𝑔ℎ = 𝐸0 = 1

2
𝑚𝑣2 (2.269)

where we have taken ℎ as the height above the table and denote the velocity of 𝑚 at
some point by 𝑢. The initial height is zero and the initial velocity is 𝑣.

So, if the initial velocity is such that 12𝑚𝑣2 > 𝑚𝑔𝐻 , the particle will go over the bump
and come back to height ℎ = 0. It will thus pass the bump and then continue moving
with velocity 𝑣. For the original observer this means: the bump will pass the particle
and after passing the particle is again laying still (but not at the same position!).

If, on the other hand 𝑣 is such that 12𝑚𝑣2 < 𝑚𝑔𝐻 , the particle will not reach the top
of the bump: it has insufficient kinetic energy. In stead it will stop at some height ℎ∗ =
𝑣2

2𝑔  and then fall of the bump again. It will continue with velocity −𝑣 at the flat part of
the table. To the original observer this means that 𝑚 first climbs the bump and returns
to get a velocity −2𝑣 on the flat part of the table.

The final possibility is 12𝑚𝑣2 = 𝑚𝑔𝐻 . In that case the particle will exactly reach the
top of the bump and stop there.

N.B. We have assumed that the bump is not too steep, because in such a case the
particle will have a real collision with the bump. Think, for instance, of the bump as a
sudden step. Then no matter how fast the particle is moving, it will not end up on the
step, but bounce back.
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2.5.5.4 Exercises

2.5.5.5 Answers
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Solution 2.205: Solution to Exercise 3

First, a sketch:

It is a 1-dimensional problem, so an 𝑥-axis will do. We denote the velocity of your
opponent (as seen by you) by 𝑣𝑜 and of the snowball 𝑣𝑠. The inertial system of you is
𝑆 and you are sitting in the origin 𝒪. Similarly, you opponents inertial system is 𝑆′
with origin 𝒪′ and finally the snowball has inertial system 𝑆" and the snowball sits in
the origin 𝒪".

1. Your perspective

𝑥𝑠(𝑡) = 𝑣𝑠𝑡 (2.270)

𝑥𝑜(𝑡) = 𝐿 + 𝑣𝑜𝑡 (2.271)

require: 𝑥𝑠(𝑡∗) = 𝑥𝑜(𝑡∗)

→ 𝑡∗ = 𝐿
𝑣𝑠 − 𝑣𝑜

= 0.4𝑠 → 𝑥∗ = 𝑣𝑠𝑡∗ = 4𝑚 (2.272)

1. Your opponent’s perspective

𝑣′𝑠 = 𝑣𝑠 − 𝑣0 = 5𝑚/𝑠 (2.273)

require: 𝑥′𝑠(𝑡′∗) = 0 since 𝑆′ is in 𝑥′ = 0. Thus

𝑥′𝑠(𝑡′∗) = −𝐿 + 𝑣′𝑠𝑡′∗ = 0 → 𝑡′∗ = 𝐿
𝑣′𝑠

= 0.4 (2.274)

Same time of course. Position: your opponent concludes she is not moving and this
she is hit at 𝑥′ = 0.

3. The snowballs perspective.

According to the snowball 𝑣"𝑜 = 𝑣𝑜 − 𝑣𝑠 = −5𝑚/𝑠. Thus,

𝑥"𝑜 = 𝐿 + 𝑣"𝑜𝑡 (2.275)

require: 𝑥"𝑜(𝑡"∗) = 0

𝑥"𝑜(𝑡"∗) = 𝐿 + 𝑣"𝑠𝑡"∗ → 𝑡"∗ = − 𝐿
𝑣"𝑜

= 0.4𝑠 (2.276)

And, again the snowball will conclude that it all happened in its origin.

Galilei Transformation
We now have three different time/place coordinates for the event ‘snowball hits
opponent’.

𝑆 : (𝑥ℎ, 𝑡ℎ) = (4𝑚, 0.4𝑠)
𝑆′ : (𝑥′ℎ, 𝑡′ℎ) = (0𝑚, 0.4𝑠)
𝑆" : (𝑥"ℎ, 𝑡"ℎ) = (0𝑚, 0.4𝑠)

(2.277)

We could have found this directly from a GT.
a) from 𝑆 to 𝑆′: we need to take into account that at 𝑡 = 0 the origins do not coincide.
Instead 𝒪′ is shifted over a distance L w.r.t. 𝒪

𝑥′ = 𝑥 − 𝐿 − 𝑣𝑜𝑡
𝑡′ = 𝑡

(2.278)

Thus: 𝑥′ℎ = 𝑥ℎ − 𝐿 − 𝑣𝑜𝑡ℎ = 0 and we get indeed (𝑥′ℎ, 𝑡′ℎ) = (0𝑚, 0.4𝑠)

b) We do a similar exercise for 𝑆 to 𝑆":
𝑥" = 𝑥 − 𝑣𝑠𝑡
𝑡" = 𝑡

(2.279)

Thus: 𝑥"ℎ = 𝑥ℎ − 𝑣𝑠𝑡ℎ = 0 and we get (𝑥"ℎ, 𝑡"ℎ) = (0𝑚, 0.4𝑠)
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2.6 Oscillations

2.6.0.1 Periodic Motion
There are many, many examples of periodic systems. We see them in physics, like the
orbit of planets around their star. We find them in biology (like the predator-prey
systems), in chemistry (oscillating reactions like the Belousov-Zhabotinsky reaction), and
in economics (like demand-supply fluctuations). They show up in daily life: the day-night
rhythm, the tides, children on a swing, your heart-beat. Periodic motions are by definition
motions that repeat themselves after a fixed period of time, usually called ‘the period’.

A specific class of periodic motion is known as oscillatory motion, or simply oscillations.
All oscillations are periodic, but not all periodic motions are oscillations. An oscillation
involves movement back and forth around an equilibrium position. It is typically caused
by a restoring force: a force that acts to return the system to equilibrium (in case of the
mass spring system: ⃗𝐹 = −𝑘𝑢⃗). However, due to inertia, the system overshoots this
position. The restoring force then reverses direction, pushing the system back again,
leading to continued oscillation.

A few simple examples will illustrate the above.

2.6.0.1.1 The merry-go-round
The merry-go-round (Figure 2) is a periodic motion, but not an oscillation. The seats go
round in a circular, periodic motion but there is no back & forth. This is in contrast to a
swing. That is also a periodic motion, but it has the back and forth as well as a restoring
force, which in this case is gravity.
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Figure 2.208:  Spinning carousel. By Oxana Mayer, from Wikimedia Commons, licensed
under CC BY-SA 2.0.

2.6.0.1.2 Rabbits and Foxes
As an example of a dynamic system that is periodic, we will take a look at the so-called
predator-prey systems. These are well-known in biology and provide an interesting case.
The idea is simple: the populations of rabbits growth as they multiply quickly. The idea in
the prey-predator model is that growth rate is proportional to the population itself. For
the rabbits that means that the derivative of the population of rabbits (with respect to
time) is positive. If there are no foxes, the rabbit population will grow exponentially. Of
course, in the real world that doesn’t happen as sooner or later, the rabbits will ran out of
food, resulting in starvation. However, we will assume here, that food is not limiting: but
the number of foxes is. They stop the rabbit population from unbounded increasing. The
more rabbits there are, the easier the foxes find food and the more foxes will survive
childhood. A simple model reads as follows:

𝑑𝑟
𝑑𝑡

= 𝜆𝑟𝑟 − 𝜇𝑟𝑟 ⋅ 𝑓

𝑑𝑓
𝑑𝑡

= −𝜆𝑓𝑓 + 𝜇𝑓𝑟 ⋅ 𝑓
(2.280)

here 𝑟 and 𝑓  represent the rabbit and fox population, resp. 𝜆𝑟 is the growth rate of the
rabbits: the more rabbits, the larger the offspring. The higher 𝜆𝑟 the more babies per
rabbit. 𝜇𝑟, on the other hand, represents the effectiveness of the hunting foxes: the larger
this value the more rabbits they kill. Of course: more rabbits, but also more foxes also
means more kills. Similar arguments apply to 𝜆𝑓  and 𝜇𝑓 . Note that the term with 𝜆𝑓
carries a negative sign: the net increase of the fox population is negative if there is
insufficient food, that is, by itself more foxes die then that are born if there is no food.

This is clearly a coupled and dynamic system. It is non-linear due to the product 𝑟 ⋅ 𝑓 ,
making it much more difficult to solve analytically then linear versions. In literature, this
kind of system is known as Lotka-Volterra or prey-predator models. Below is a plot of the
numerical solution of the rabbit and fox population (for (𝜆𝑟, 𝜇𝑟, 𝜆𝑓 , 𝑚𝑢𝑓) =
(0.2, 0.03, 0.1, 0.01) and initial conditions (𝑟0, 𝑓0) = (80, 2)).
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Figure 2.210:  Periodic time evolution of the population of rabbits and foxes.

The solution is periodic. This can be illustrated better by plotting 𝑓  against 𝑟. The
animation below shows this (this kind of plot is called a phase plot).

Figure 2.211:  Phase plot of the rabbit-fox prey-predator model. The red dot shows the
population at different times. Note that the number of rabbits quickly increases when

there are very few foxes. However, at some point the number of foxes also goes up and
soon the start reducing the rabbits, while increasing in numbers themselves. That is not

sustainable and when the number of rabbits is brought down substantially, also the
number of foxes decreases, until both are almost extinct and the cycle repeats.

2.6.0.1.3 Wilberforce Oscillator
As a third example we look at the Wilberforce pendulum. This is a spring, suspended
vertically, to which a weight is fixed at the free end. The weight can go up and down but
also rotate in a horizontal plane. A sketch is given below.

Figure 2.212:  Wilberforce pendulum.

Imagine that we pull 𝑚 a little down and let go. The spring will try to restore the position
of the mass to the equilibrium position it was in prior to us pulling 𝑚 down.
Consequently, 𝑚 will start oscillating in the vertical direction. However, something
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peculiar happens: the mass 𝑚 also starts to rotate (around the vertical axis). And also this
rotation turns out to be a back and forth oscillation. But that is not all: the two
oscillations are coupled: they feed each other. If the vertical oscillation is at a maximum
amplitude, the rotational motion is almost zero and vice-versa.

Figure 2.213:  A Wilbertforce pendulum made by first year physics students

The system can be modeled with simple means. We will just postulate them. Later on, we
will see where the terms come from.
First, we note that the mass has kinetic energy, in two forms: due to the vertical motion
(1
2𝑚 ̇𝑧2) and due to the rotational motion (1

2𝐼 ̇𝜃2). Don’t worry about the exact meaning for
now.
Second, the mass has potential energy. We will ignore gravity (we could for instance do
the experiment in the International Space Station, ISS). A potential energy is associated
with the vertical motion and is the spring energy: 𝑉𝑧 = 1

2𝑘𝑧2, with 𝑧 the vertical position
of the mass with respect to the equilibrium position, which we took as 𝑧 = 0. 𝑘 is the
spring constant and represents the strength of the spring. We will come back to this later.
Then, we have potential energy associated with the rotation: 𝑉𝜃 = 1

2𝛿𝜃2. 𝜃 represent the
rotation angle, where we have taken 𝜃 = 0 in the equilibrium position. 𝛿 is the torsional
spring constant: it represents how strongly the spring tries to push back against rotation.
Finally, the vertical position and the rotation influence each other. That can be understood
by realizing that if you shorten the spring, the spring material has to go somewhere. It
can not only change its vertical length as that would mean that the total length of the
spring would reduce. But that would compress the spring material and that is not possible
for solid material (unless you apply incredibly large forces). The spring just increases its
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number of windings a bit. But that implies rotation. Similarly, if we only rotate the spring,
it will try to adjust its length. As a consequence, there is also a potential energy involved
in the influencing of 𝑧 and 𝜃 of each other. It can be modeled as 𝑉𝑧𝜃 = 𝜀𝑧𝜃.

If we ignore friction, then we have a system that can be described in terms of energy:

1
2
𝑚 ̇𝑧2 + 1

2
𝐼 ̇𝜃2 + 1

2
𝑘𝑧2 + 1

2
𝛿𝜃2 + 𝜀𝑧𝜃 = 𝐸0 (2.281)

From this, we can find ‘N2’, the equation of motion:

𝑚 ̈𝑧 = −𝑘𝑧 − 𝜀𝜃
𝐼 ̈𝜃 = −𝛿𝜃 − 𝜀𝑧

(2.282)

Don’t worry, if you don’t follow this. The point here is, that we have a coupled system of
two oscillators. This can be solved numerically.

We could use a simple numerical scheme like we have employed in Chapter 3. In the
figure below 𝑧(𝑡) and 𝜃(𝑡) are shown using such a simple numerical scheme.

Figure 2.214:  Numerical solution of the Wilberforce pendulum using a (too) simple
numerical method.

We indeed see the oscillating motion and that the vertical oscillation changes over to
rotation and back again.

But there is something really disturbing: the amplitude of our oscillation is increasing and
it seems to do so for every cycle. That cannot be true: It violates energy conservation.
What did we do wrong? Well, our numerical method is just not good enough. If we use
again a higher order method, we obtain the results in the figure below.
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Figure 2.215:  Numerical solution of the Wilberforce pendulum using a higher-order
numerical method.

Now the amplitude of the oscillations stays nicely constant, obeying conservation of
energy.

In the figure below a small animation can be seen: the marker in both graphs shows 𝑧 and
𝜃 at the same time instant.

Figure 2.216:  Animation of the Wilberforce pendulum using a higher-order numerical
method.

The Wilberforce pendulum is clearly periodic. Moreover, it is an oscillation as there is
back and forth motion around an equilibrium.

But, it does give us a big warning: (numerical) solutions always have to be assessed
against the features and principles of the problem at hand. In this case, our first numerical
solution could not be right: it violated energy conservation. We were able, right from
the start, to formulate the problem in terms of energy. Since we only had kinetic energy
and potential energy we knew up front that the motion must be bounded!
That is why, we need a thorough understanding of physics. It is not sufficient to have the
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equations and put them in a ‘solver’. It is the job of a physicist to understand and assess
models, outcomes, etc against the laws of physics. Hence, we will dive into oscillations,
starting from the beginning.

2.6.0.2 Harmonic Oscillation - archetype: Mass-Spring
The archetype of an oscillation is the mass-spring system. It is the simplest version
(simpler than the pendulum as we will see). And it can be recognized in many systems.
We consider the following: a mass is attached to a spring. The other end of the spring is
fixed. The mass can only move in one direction: the 𝑥-direction. The spring has a natural
or rest length 𝑙0. That is the length of the spring if no force is acting on it. If we pull the
spring, it will exert a force that is proportional to the increase in length. Moreover, it is
pointing in the direction opposite to the lengthening. In formula:

𝐹𝑣 = −𝑘(𝑙 − 𝑙0) = −𝑘Δ𝑙 (2.283)

This is shown in the figure below.

Figure 2.217:  Mass-spring system: archetype of a (harmonic) oscillation.

The response of the spring is to exert a force on 𝑚 proportional to its elongation (which
may be negative, i.e. the spring is compressed). It is clearly a restoring force: no matter
what we do pulling or pushing, the spring will always counteract.

It is not difficult to set up N2 for the mass-spring. There is only one force and the system
is 1-dimensional. If we define the origin at the position of the mass when the spring is at
its rest length, then Δ𝑙 - the elongation of the spring - becomes 𝑥, the coordinate of the
mass 𝑚. Thus N2 reads as:

𝑚 ̈𝑥 = −𝑘𝑥 (2.284)
Or

𝑚 ̈𝑥 + 𝑘𝑥 = 0 (2.285)

To solve this, we need two initial condition. Let’s take 𝑡 = 0 : 𝑥(0) = 𝑥0, 𝑣(0) = 0. We
need to find a function 𝑥(𝑡) that upon differentiating twice it spits itself back but with an
opposite sign. We do know two functions that do so: 𝑥(𝑡) = sin(𝜔0𝑡) and 𝑥(𝑡) =
cos(𝜔0𝑡). Thus, the general solution of the above equation is known.

Harmonic Oscillator:

𝑚 ̈𝑥 + 𝑘𝑥 = 0 ⇔ 𝑥(𝑡) = 𝐴 sin 𝜔0𝑡 + 𝐵 cos 𝜔0𝑡 (2.286)

If we insert the solution, we find

𝜔2
0 = 𝑘

𝑚
(2.287)

This is called the natural frequency of the oscillator. Note, that it does not depend on the
initial conditions. No matter what, the mass will always oscillate with this frequency.
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It does make sense that the frequency is inversely proportional to 𝑚: we expect a heavy
object will respond slow to a force. Similarly, if the spring is strong, that is has a high
spring constant 𝑘, it will move the mass around quickly.

If we substitute the initial condition, we can completely solve the motion of the mass:

𝑚 ̈𝑥 + 𝑘𝑥 = 0 ⇒ 𝑥(𝑡) = 𝐴 sin 𝜔0𝑡 + 𝐵 cos 𝜔0𝑡 ⇒

⇒ 𝑥(𝑡) = Δ𝑥 cos √ 𝑘
𝑚

𝑡

(2.288)

A system is called a harmonic oscillator if and only if it obeys 𝑚 ̈𝑥 + 𝑘𝑥 = 0. You will find
them in almost every branch of science and engineering. The reason why will become
apparent in a moment.

2.6.0.2.1 Potential energy of a spring
In the above, we have formulated the mass-spring system in terms of Newton’s second
law. We can, however, also cast it in the form of energy. The force of the spring is
conservative. We can easily prove this by finding the associated potential energy: 𝐹𝑣 =
−𝑑𝑉

𝑑𝑥 .
Since 𝐹𝑣 = −𝑘𝑥 we need to find a function 𝑉 (𝑥) that satisfies 𝑑𝑉

𝑑𝑥 = 𝑘𝑥. Let’s do it:

𝑑𝑉
𝑑𝑥

= 𝑘𝑥 ⇒ 𝑉 (𝑥) = 1
2
𝑘𝑥2 + 𝐶 (2.289)

We have the freedom to decide ourselves where we want the potential energy to be zero.
Note: 𝑉  is quadratic.
It does make sense, to set the minimum of the potential energy such that if the mass is at
the equilibrium position, the potential energy is zero, that is - take 𝐶 = 0:

𝑉 (𝑥) = 1
2
𝑘𝑥2 (2.290)

Thus the mass-spring system can also be described by

1
2
𝑚𝑣2 + 1

2
𝑘𝑥2 = 𝐸0 (2.291)

So, an other way of stating what a harmonic oscillator is: it is a system that obeys the
above energy equation.

2.6.0.3 Behavior around an equilibrium point and harmonic oscillators
Now we will go back to paragraph 5.5.1, where we discussed the Taylor series expansion
of the function 𝑓(𝑥):

𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) + 1
2
𝑓′′(𝑥0)(𝑥 − 𝑥0)

2 + 𝒪(𝑥3) (2.292)

We will apply it to a potential energy 𝑉 (𝑥) of some system. We assume that the system
has a stable equilibrium point at 𝑥 = 𝑥0, that is [𝑑𝑉

𝑑𝑥 ]
𝑥=𝑥0

= 0 and [𝑑2𝑉
𝑑𝑥2 ]

𝑥=𝑥0
> 0.

Thus, we can expand the potential as follows:

𝑉 (𝑥) ≈ 𝑉 (𝑥0) + 1
2
[𝑑2𝑉

𝑑𝑥2 ]
𝑥=𝑥0⏟⏟⏟⏟⏟

=𝑘

(𝑥 − 𝑥0)
2 + 𝒪[(𝑥 − 𝑥0)

3] (2.293)
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If we plug this in, in the energy equation and cut off after the quadratic term, we find

1
2
𝑚𝑣2 + 𝑉 (𝑥0) + 1

2
[𝑑2𝑉

𝑑𝑥2 ]
𝑥=𝑥0⏟⏟⏟⏟⏟

=𝑘

(𝑥 − 𝑥0)
2 = 𝐸0 (2.294)

or shortened by the abbreviation [𝑑2𝑉
𝑑𝑥2 ]

𝑥=𝑥0
= 𝑘

1
2
𝑚𝑣2 + 𝑉 (𝑥0) + 1

2
𝑘(𝑥 − 𝑥0)

2 = 𝐸0 (2.295)

Move the constant 𝑉 (𝑥0) to the right hand side and change coordinate 𝑠 ≡ 𝑥 − 𝑥0 →
̇𝑠 = ̇𝑥 = 𝑣. This gives us:

1
2
𝑚 ̇𝑠2 + 1

2
𝑘𝑠2 = 𝐶 (2.296)

The harmonic oscillator!!! No wonder we find harmonic oscillators ‘everywhere’. Any
system that has a stable equilibrium point with a positive second derivative of its
potential will start to oscillated as a harmonic one if we push it a little bit out of its
equilibrium position. Doesn’t matter how 𝑉 (𝑥) exactly is. It doesn’t have to be quadratic
in 𝑥. But it will be pretty close to that, if we stay close enough to the equilibrium point.
Hence, any small natural kick, any small amount noise will push a system out of its stable
equilibrium point into an harmonic oscillating motion with a given, natural frequency

given by 𝜔2
0 =

[𝑑2𝑉
𝑑𝑥2 ]

𝑥=𝑥0
𝑚 .

2.6.0.4 Examples of Harmonic Oscillators

2.6.0.4.1 Torsion Pendulum
We take a straight metal wire. Suspend one end at the ceiling and attach a disc of radius
𝑅 and mass 𝑚 at the other end.

Figure 2.218:  Torsion Pendulum.

The disk can rotate about a vertical axis. We call the rotation angle 𝜃. The equilibrium
position is 𝜃 = 0. If we rotate the disc over a small angle, the wire will resist and apply a
torque 𝑎𝑢 on the disc trying to rotate the disc back to its equilibrium position, for which
the torque, obviously is zero.

For small angles, the torque is proportional to the rotation angle and -of course -working
in the direction opposite of the rotated angle. We can set up an angular momentum
equation and find that it reads as:

𝐼 𝑑2𝜃
𝑑𝑡2

= −𝑘𝑡𝜃 (2.297)
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In this equation, 𝐼 = 1
2𝑚𝑅2 is the moment of inertia of the disc and 𝑘𝑡 is the torsion

constant of the wire. Don’t worry about the exact meaning of the terms in the equation.
For now, we focus on the equation itself:

𝐼 𝑑2𝜃
𝑑𝑡2

+ 𝑘𝑡𝜃 = 0 ⇒ 𝜃(𝑡) = 𝐴 sin 𝜔0𝑡 + 𝐵 cos 𝜔0𝑡 (2.298)

The torsion pendulum is a harmonic oscillator, 𝜔2
0 = 𝑘𝑡

𝐼 , completely analogous to the
archetype, mass-spring. Obviously, we thus can also write this in terms of energy:

1
2
𝐼𝜔2 + 1

2
𝑘𝑡𝜃2 = 𝐸0 (2.299)

with 𝜔 ≡ 𝑑𝜃
𝑑𝑡 , the angular velocity.

2.6.0.4.2 L-C circuit
In Electronics alternating current (AC) circuits are building blocks of many complex
systems. One of these is the L-C circuit, in which an inductor, 𝐿, and a capacitor, 𝐶 , are in
series coupled. See Figure 13.

Figure 2.219:  L-C circuit.
Intermezzo: Kichhoff’s Laws

In dealing with electronic circuits, there are two helpful laws. They carry the name of
the German Physicist Gustav Kirchhoff, who wrote them down in 1845.The first law is
‘current law’. Picture a node in an electronic circuit, that is a point where a number of
elements are connected to each other. This may be resistors, capacitances, batteries,
any element. Then the total current flowing in to the node is the same as the total
current flowing out of the node. In other words: a node can not store charge; what
flows in must flow out. In a more mathematical form we write: the sum of currents in
a node is zero.Currents in and out of a node must add to zero.In the example in the
figure, with a resistor a capacitance and a battery, this is: The second law is the
Kirchhoff’s Voltage Law. Now we go around a loop in a circuit, that is any loop you
can find. We start at a certain point and after each element we write down the voltage
after that element. Once we have returned to our starting point, we sum up all voltage
differences that we now have (that is the voltage difference over each element). The
result is zero: no matter which loop we take, the sum of voltages differences is always
zero: .Voltage differences across a loop add up to zero.In the example in the figure,
again with a resistor, a capacitance and a battery, this is: It is comparable with a
closed loop walk in the mountains: you start at a certain point with a certain height.
Then, you go up and down, up and down. But at the end of the walk: you gained no
height and didn’t loose it either (despite all your effort 😊 ).

We could charge the capacitor and then close the circuit. What would happen? The
capacitor will try to discharge via the inductor. Hence a current, 𝐼 , starts flowing. In
response, the inductor builds up a potential difference that is directly proportional to the
rate of change of the current through the inductor.
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Basic electronics shows that the voltage over the capacitor is coupled to the charge, 𝑄𝐶 ,
of the capacitor according to: 𝑉𝐶 = 𝑄𝐶

𝐶 . For the inductor we have: 𝑉𝐿 = 𝐿𝑑𝐼𝐿
𝑑𝑡 .

According to Kirchhoff’s laws the current through both elements must be the same: 𝐼𝐶 =
𝐼𝐿 and the sum of the voltages across them must be equal to zero: 𝑉𝑐 + 𝑉𝐿 = 0. If we put
everything together, we get - using 𝐼𝐶 = 𝑑𝑄𝑐

𝑑𝑡 :

𝑉𝐿 + 𝑉𝐶 = 0 ⇒
𝑑𝑉𝐿
𝑑𝑡

+ 𝑑𝑉𝐶
𝑑𝑡

= 0 ⇒

𝐿𝑑2𝐼
𝑑𝑡2

+ 1
𝐶

𝐼 = 0 ⇒

𝑑2𝐼
𝑑𝑡2

+ 1
𝐿𝐶

𝐼 = 0𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟!!!

(2.300)

As we see, this LC-circuit will start to oscillate. In the animation below the current
through the circuit and the voltage across the inductor are shown for 𝐶 = 1𝜇𝐹  and 𝐿 =
1𝜇𝐻 .

Figure 2.220:  Harmonic oscillation of an LC-circuit.

2.6.0.4.3 Musical Instruments
Musical instruments produce sound waves. In many cases they do that via vibrations of
strings, like the guitar, the violin, harp or piano. The strings of these instruments are
displaced out of their equilibrium position. Due to the tension in these strings, there is a
restoring force that is proportional to the displacement. Consequently, the string will start
to oscillate in an harmonic way.

Not only strings, but also beams will exhibit this behavior, well-known example: a tuning
fork. We will come back to waves at the end of this chapter.

2.6.0.5 The pendulum
Another example of oscillatory motion is the pendulum. In it’s most simple form it is a
point-mass 𝑚, attached to a massless rod of length 𝐿. The rod is fixed to a pivotal point
that allows it to swing freely.
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Figure 2.221:  Sketch of a pendulum.

On the mass, gravity is acting vertically downwards. Also the rod exerts a force on the
mass. This force is always parallel to the rod and points to the pivotal point. It is the
response of the rod to the component of gravity parallel to the rod (the dark blue arrow in
Figure 17). It is good to realize, that this force makes sure that the distance from 𝑚 to the
pivotal point is always 𝐿. In other words, this force is a consequence of the fixed length 𝐿
of the rod. It is the physics translation of the constraint: 𝐿 is constant.

2.6.0.5.1 N2 for the pendulum: Equation of motion via N2
We will set up Newton’s second Law for 𝑚.

𝑚𝑑 ⃗𝑣
𝑑𝑡

= −𝑚𝑔𝑧 + ⃗𝐹𝑡 (2.301)

As stated above, the blue, parallel part of gravity is balanced by a tensional force in the
rod. So, we don’t need to worry about motion of 𝑚 parallel to the rod. That leaves us with
the direction perpendicular of the rod. In that direction only the red arrow works on 𝑚.

In the other direction only the red, perpendicular component of gravity acts on 𝑚. This
component is equal to −𝑚𝑔 sin 𝜙. The velocity component in this direction is 𝑣 = 𝐿𝑑𝜙

𝑑𝑡 .
Thus we get:

𝑚𝐿𝑑2𝜙
𝑑𝑡2

= −𝑚𝑔 sin 𝜙 (2.302)

Or rewritten

𝑚𝐿𝑑2𝜙
𝑑𝑡2

+ 𝑚𝑔 sin 𝜙 = 0 (2.303)

We do know from experience that the pendulum will swing back and forth in a periodic
way. However, as we see from the above equation of motion: it is not a harmonic
oscillator. The term with the sine prevents that.

But for small values of the angle 𝜙, that is for small oscillations around the stable
equilibrium 𝜙𝑒𝑞 = 0, we can approximate the sinus via a Taylor series and write:

𝜙 ≪ 1 ⇒ sin 𝜙 ≈ sin 0 + 1
1!

cos 0 𝜙 − 1
2!

sin 0 𝜙2 + …

≈ 𝜙
(2.304)

Thus within this approximation we can write for the equation of motion of the pendulum:

𝑚𝐿𝑑2𝜙
𝑑𝑡2

+ 𝑚𝑔𝜙 = 0 ⇒ 𝑑2𝜙
𝑑𝑡2

+ 𝑔
𝐿

𝜙 = 0 (2.305)

and that describes a harmonic oscillator.

We conclude that for small amplitudes of the oscillation, the pendulum is an harmonic
oscillator and swings in a sine or cosine way back and forth. Moreover, the oscillation has
a frequency
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𝜔𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 = √ 𝑔
𝐿

(2.306)

Further, note that under this assumption, the period of the pendulum does not depend on
the amplitude of the oscillation. That was already noted by Galileo Galilei.

2.6.0.5.2 N2 for the pendulum: Equation of motion via Angular Momentum
Before we continue with the analysis of the pendulum, we will derive the equation of
motion also via angular momentum considerations. On 𝑚 gravity exerts a torque: ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑎𝑢 =
⃗𝑟 × ⃗𝐹𝑔 It has a magnitude −𝐿𝑚𝑔 sin 𝜙 and points into the screen. The angular

momentum of 𝑚 is given by 𝐿⃗ = ⃗𝑟 × ⃗𝑝. This has magnitude 𝑚𝐿2 𝑑𝜙
𝑑𝑡  and also points into

the screen.

Thus N2 for angular momentum gives us:

𝑑𝐿⃗
𝑑𝑡

= ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑎𝑢 ⇒ 𝑚𝐿2 𝑑2𝜙
𝑑𝑡2

= −𝐿𝑚𝑔 sin 𝜙 (2.307)

Thus, angular momentum leads to the same equation of motion.

2.6.0.5.3 The Pendulum via energy conservation
Alternatively, we can also use energy conservation to derive the equation governing the
motion of the pendulum. There are, as discussed above, two forces acting on 𝑚. The first
one is gravity, which is a conservative force with associated potential energy. We can
write for this case 𝑉𝑔 = 𝑚𝑔𝑧, taking 𝑉𝑔(𝑧 = 0) = 0.

The second one is the force from the rod. But this one always acts perpendicular to the
motion of 𝑚. Hence, it does not do any work and, thus, we don’t need to worry about an
associated potential.

We conclude that for the pendulum it holds that:

1
2
𝑚𝑣2 + 𝑚𝑔𝑧 = 𝐸0 (2.308)

To solve this, we change from 𝑧 to 𝜙. 𝑧 is, in terms of 𝜙: 𝐿 − 𝐿 cos 𝜙, see Figure 18.

Figure 2.222:  Potential energy of a pendulum.

Thus, our energy equation reads as:

1
2
𝑚𝑣2

𝜙 + 𝑚𝑔𝐿(1 − cos 𝜙) = 𝐸0 (2.309)

or
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1
2
𝑚𝑣2

𝜙 − 𝑚𝑔𝐿 cos 𝜙 = 𝐸0 − 𝑚𝑔𝐿 (2.310)

Take the time-derivative and use 𝑣𝜙 = 𝐿𝑑𝜙
𝑑𝑡  and we get

𝑚𝑣𝜙
𝑑𝑣𝜙

𝑑𝑡
+ 𝑚𝑔𝐿 sin 𝜙𝑑𝜙

𝑑𝑡
= 0 ⇒

𝑚𝐿𝑑𝜙
𝑑𝑡

𝑑
𝑑𝑡

(𝐿𝑑𝜙
𝑑𝑡

) + 𝑚𝑔𝐿 sin 𝜙𝑑𝜙
𝑑𝑡

= 0 ⇒

𝑑2𝜙
𝑑𝑡2

+ 𝑔
𝐿

sin 𝜙 = 0

(2.311)

And we have recovered the same equation of motion.

2.6.0.5.4 Pendulum for not so small angles
In the above we have frequently used the approximation sin 𝜙 ≈ 𝜙 for 𝜙 ≪ 1. What
about the general case? Then we need to solve

𝑑2𝜙
𝑑𝑡2

+ 𝑔
𝐿

sin 𝜙 = 0

𝑤𝑖𝑡ℎ𝑖.𝑐.𝜙(0) = 𝜙0𝑎𝑛𝑑𝑑𝜙
𝑑𝑡

= ̇𝜙0

(2.312)

This equation is much more difficult to solve analytically and we will, therefore, use a
numerical approach here. The animation below compares the motion of the pendulum
numerically simulated to that of the pendulum when using the small amplitude
approximation.

The animation shows: a green mass, that is the pendulum with a (fixed) small amplitude
in the approximation sin 𝜙 = 𝜙. The blue one uses the same approximation even though
𝜙 is not small. Notice, that blue and green oscillate with exactly the same frequency. This
is, of course, trivial as they obey the same harmonic oscillation equation and thus have
the same frequency.

The red mass, on the other hand obeys the equation of motion of the pendulum leaving
the term with sin 𝜙. It is clear that the real pendulum (i.e. the red one) does not have the
same frequency as the others. Moreover, its time trace (left part of the figure) is clearly
not a true sinus.

Figure 2.223:  Animation of the pendulum: red is the true pendulum, blue the small angle
approximation applied to a large angle case and green the small angle approximation for

a small angle.
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In the widget below, you can vary the initial angle and observe that indeed for a small
angle the red mass and the other two follow the same trajectory. But if you increase the
initial angle, the red mass behaves differently: it oscillates slower and the time trace of
angle as a function of time is no longer sinusoidal.

Content missing, will be updated

app needs to be checked

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from IPython.display import HTML

# Parameters
L = 1.5         # Length pendulum (scaled)
g = 9.81        # Gravity (m/s^2)
phi0 = 1.6      # Initial angle (rad)
t_stop = 10     # Total time (s)
dt = 0.05       # Time step (s)

w0 = np.sqrt(g / L)

# Time array
t = np.arange(0, t_stop, dt)

# Numerical solution of pendulum using simple Euler method
phi_num = np.zeros_like(t)
w_num = np.zeros_like(t)
phi_num[0] = phi0
w_num[0] = 0
for i in range(1, len(t)):
    w_num[i] = w_num[i-1] - (g / L) * np.sin(phi_num[i-1]) * dt
    phi_num[i] = phi_num[i-1] + w_num[i] * dt

# Harmonic oscillator approx (small angle approx)
phi_harm = phi0 * np.cos(w0 * t)

# Green pendulum: fixed small angle 0.2 rad harmonic approx
phi_fixed = 0.2 * np.cos(w0 * t)

# Setup plot
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))

# Left canvas: pendulum animation setup
ax1.set_xlim(-L*1.2, L*1.2)
ax1.set_ylim(-L*1.2, L*1.2)
ax1.set_aspect('equal')
ax1.set_title('Pendulum Animation')
ax1.axis('off')

rod_num, = ax1.plot([], [], 'r-', lw=3, label='Numerical Pendulum')
bob_num = ax1.plot([], [], 'ro', ms=10)[0]

rod_harm, = ax1.plot([], [], 'b-', lw=3, label='Harmonic Approx')
bob_harm = ax1.plot([], [], 'bo', ms=8)[0]

150



rod_fixed, = ax1.plot([], [], 'g-', lw=3, label='Fixed Small Angle')
bob_fixed = ax1.plot([], [], 'go', ms=8)[0]

ax1.legend(loc='upper right')

# Right canvas: angle vs time plots
ax2.set_xlim(0, t_stop)
ax2.set_ylim(-phi0 * 1.2, phi0 * 1.2)
ax2.set_title('Pendulum Angle vs Time')
ax2.set_xlabel('$t$ (s)')
ax2.set_ylabel('$\\phi$ (rad)')
line_num, = ax2.plot([], [], 'r-', label='Numerical')
line_harm, = ax2.plot([], [], 'b-', label='Harmonic')
line_fixed, = ax2.plot([], [], 'g-', label='Fixed 0.2 rad')
point_num, = ax2.plot([], [], 'ro')
point_harm, = ax2.plot([], [], 'bo')
point_fixed, = ax2.plot([], [], 'go')
ax2.legend()

def init():
    for artist in [rod_num, bob_num, rod_harm, bob_harm, rod_fixed,
bob_fixed,
                   line_num, line_harm, line_fixed, point_num, point_harm,
point_fixed]:
        artist.set_data([], [])
    return rod_num, bob_num, rod_harm, bob_harm, rod_fixed, bob_fixed,
line_num, line_harm, line_fixed, point_num, point_harm, point_fixed

def update(frame):
    # Current angles
    phi_n = phi_num[frame]
    phi_h = phi_harm[frame]
    phi_f = phi_fixed[frame]

    # Coordinates for bobs (pendulum rods)
    x_num = L * np.sin(phi_n)
    y_num = -L * np.cos(phi_n)

    x_harm = L * np.sin(phi_h)
    y_harm = -L * np.cos(phi_h)

    x_fixed = L * np.sin(phi_f)
    y_fixed = -L * np.cos(phi_f)

    # Update pendulum rods and bobs
    rod_num.set_data([0, x_num], [0, y_num])
    bob_num.set_data([x_num], [y_num])

    rod_harm.set_data([0, x_harm], [0, y_harm])
    bob_harm.set_data([x_harm], [y_harm])

    rod_fixed.set_data([0, x_fixed], [0, y_fixed])
    bob_fixed.set_data([x_fixed], [y_fixed])

    # Update angle vs time lines (up to current frame)

151



    time_so_far = t[:frame+1]
    line_num.set_data(time_so_far, phi_num[:frame+1])
    line_harm.set_data(time_so_far, phi_harm[:frame+1])
    line_fixed.set_data(time_so_far, phi_fixed[:frame+1])

    # Update current points on the plots (wrap scalars in lists)
    point_num.set_data([t[frame]], [phi_num[frame]])
    point_harm.set_data([t[frame]], [phi_harm[frame]])
    point_fixed.set_data([t[frame]], [phi_fixed[frame]])

    return rod_num, bob_num, rod_harm, bob_harm, rod_fixed, bob_fixed,
line_num, line_harm, line_fixed, point_num, point_harm, point_fixed

ani = FuncAnimation(fig, update, frames=len(t), init_func=init, blit=True,
interval=50)
HTML(ani.to_jshtml())

2.6.0.6 The damped harmonic oscillator
In the above, no friction of any form has been considered. However, in many practical
cases friction will be present. For moving objects friction frequently depends on the
velocity: the higher the velocity, the higher the frictional force. We will here consider the
simplest version: a friction force that is directly proportional to the velocity: 𝐹𝑓 = −𝑏𝑣
with 𝑏 a positive constant. Thus, we need to add an additional force to our harmonic
oscillator:

𝑚 ̈𝑥 = −𝑘𝑥 − 𝑏 ̇𝑥 (2.313)
or bringing all terms to the left hand side:

𝑚 ̈𝑥 + 𝑏 ̇𝑥 + 𝑘𝑥 = 0 (2.314)

To solve this equation, it is easier not to try to look directly for sinus and cosines, but use
the complex notation.

Intermezzo: complex exponential and sin, cos

In the 18 century, the study of complex numbers, i.e. , revealed a surprising
connection between the exponential function and trigonometry. It was Leonhard
Euler (1707-1783) who derived:
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The general solution of the (linearly) damped harmonic oscillator is:

𝑚 ̈𝑥 + 𝑏 ̇𝑥 + 𝑘𝑥 = 0 ⇒

𝑥(𝑡) = 𝐴𝑒𝜆+𝑡 + 𝐵𝑒𝜆−𝑡

𝑤𝑖𝑡ℎ

𝜆+,− = −𝑏 ±
√

𝑏2 − 4𝑚𝑘
2𝑚

(2.315)

We will investigate various cases.

D = b²-4mk 𝑙𝑡 0

In this case, the square root in 𝜆 is imaginary and we can write it as 𝑖
√

4𝑚𝑘 − 𝑏2.
This gives us for the two possibilities of 𝜆

𝜆+ = − 𝑏
2𝑚

+ 𝑖√ 𝑘
𝑚

− 𝑏2

4𝑚2

𝜆− = − 𝑏
2𝑚

− 𝑖√ 𝑘
𝑚

− 𝑏2

4𝑚2

(2.316)

Both have the same real part: − 𝑏
2𝑚  showing that both solutions are damped (with the

same factor!). Moreover, the imaginary parts are equal, apart from the sign which we
also had in the undamped case. We will write the imaginary part as 𝜔 (that is without
the subscript 0 we used for the undamped case).

So, our solution reads as:

𝑥(𝑡) = (𝐴𝑒𝑖𝜔𝑡 + 𝐵𝑒−𝑖𝜔𝑡)⏟⏟⏟⏟⏟⏟⏟
𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛

𝑒− 𝑏
2𝑚𝑡⏟

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑎𝑚𝑝𝑖𝑛𝑔

𝑤𝑖𝑡ℎ

𝜔 ≡ √ 𝑘
𝑚

− 𝑏2

4𝑚2 < √ 𝑘
𝑚

= 𝜔0

(2.317)

Conclusion: the damped oscillator oscillates with a smaller frequency than the
undamped one and it amplitude decreases over time. The later is of course to be
expected due to friction: sooner or later friction has dissipated all the kinetic &
potential energy.

D = b² - 4mk = 0

For this specific combination of 𝑏, 𝑘, 𝑚 we see that the frequency of the oscillation is
0. In other words, the systems does not perform oscillations. Furthermore, our two
values of 𝜆 are now equal. Consequently the general solution that we presented is no
longer complete (we now only have one integration constant, or only one independent
function if you prefer.) We need a second one and that turns out to be of the form
𝑡𝑒𝜆𝑡. You can verify that by substituting it in the equation of motion for the damped
case.

Thus we have know:
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𝐷 = 𝑏2 − 4𝑚𝑘 = 0 ⇒

𝑥(𝑡) = (𝐴 + 𝐵𝑡)𝑒− 𝑏
2𝑚𝑡

(2.318)

D = b² - 4mk > 0

Again, there is no imaginary part in 𝜆, so no oscillations. But we do have two different
values for 𝜆 and thus our original general solution is still valid:

𝑥(𝑡) = 𝐴𝑒−𝑏+√𝑏2−4𝑚𝑘
2𝑚 𝑡 + 𝐵𝑒−𝑏−√𝑏2−4𝑚𝑘

2𝑚 𝑡 (2.319)

Note that −𝑏 +
√

𝑏2 − 4𝑚𝑘 < 0. So, both terms are decreasing to zero: the motion
comes to a stop as 𝑡 → ∞.

Further, note that the first part (with 𝐴) has an exponent that is closer to zero than the
one of the other part (with 𝐵). Thus the second part will decay faster and for
sufficiently large 𝑡, the solution behaves like 𝐴𝑒−𝑏+√𝑏2−4𝑚𝑘

2𝑚 𝑡.

In the figure below, an example of case 1 and case 3 is shown together with the
solution of case 2. We see, that case 2 is the one that decays fastest: it has the highest
damping coefficient in its exponent. This is called critical damping. If you need to
dampen unwanted oscillations: make sure you tune your damping parameter b such
that 𝑏2 − 4𝑚𝑘 = 0.

Figure 2.224:  Different cases for the damped harmonic oscillator.

2.6.0.6.1 Evolution of the damping
Here we will have a quick look how the damping is evolving, that is we look at the root of
the characteristic equation

𝜆1/2 = −𝑏 ±
√

𝑏2 − 4𝑚𝑘
2𝑚

(2.320)

and see how it evolves as a function of the damping 𝑏 in the complex plane.

Figure 2.225:  Evolution of 𝜆 as a function of 𝑏 in the complex plane.
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This gives quickly a qualitative view on the different regimes of the damping. The root
𝜆1/2 is in general complex. We start by looking at the value for roots 𝜆1/2 as a function of
the damping 𝑏

• No damping: 𝑏 = 0. The root is pure imaginary 𝜆1/2 = ±𝑖√𝑘/𝑚 with two
conjugate solutions on the imaginary axis. This gives pure oscillations.

• Some damping 0 < 𝑏 <
√

4𝑚𝑘. The root is complex, with real and imaginary part,
the oscillation will damp out over time (shown in blue, underdamped regime).

• 𝑏2 = 4𝑚𝑘. The roots collapse into one pure real root 𝜆 = −𝑏/2𝑚 (critically
damped), no oscillation.

• Lots of damping 𝑏 >
√

4𝑚𝑘. The root splits into two real roots, no oscillations
(shown in yellow, overdamped regime).

The root walks over the shown graph from 𝑏 = 0 on the imaginary axis to 𝑏 → ∞ over
the blue and then yellow part of the graph. The yellow graph does not cross the
imaginary axis.

From this plot you can directly see that the system is stable for 𝑏 > 0, but unstable for 𝑏 =
0 without the need to check the frequency that the system is driven with (for 𝑏 = 0
driven with the resonance frequency results in an infinite amplitude - an instable system).
How you can see that so quickly you will learn in the second year class Systems and
Signals.

2.6.0.7 Driven Damped Harmonic Oscillator
Oscillators sometimes experience a driving force that can be periodic in itself. We will
take here the case of a sinusoidal force with frequency 𝜈. Once we understand this, forces
consisting of more than one frequency (broader spectrum) can be understood using
Fourier analysis (which you will learn about classes like Systems and Signals or Fourier
Analysis in math). There you will also learn to treat this system in more detail
analytically. Here we will stick to a simple driving force of the form 𝐹𝑒𝑥𝑡 = 𝐹0 sin(𝜈𝑡).

This gives for the equation of motion:

𝑚 ̈𝑥 + 𝑏 ̇𝑥 + 𝑘𝑥 = 𝐹0 sin(𝜈𝑡) (2.321)

with initial conditions: at 𝑡 = 0 the particle will have some position 𝑥0 and some velocity
𝑣0.

The solution of the driven damped harmonic oscillator equation of motion for the case
𝐷 = 𝑏2 − 4𝑚𝑘 < 0 is:

𝑥(𝑡) = 𝐴𝑒− 𝑏
2𝑚𝑡 sin(√ 𝑘

𝑚
− 𝑏2

4𝑚2 𝑡 + 𝜀) + 𝑥𝑚𝑎𝑥 sin(𝜈𝑡 + 𝛼) (2.322)

With 𝐴 and 𝜀 determined by the initial conditions.

The two other parameters 𝑥𝑚𝑎𝑥 and 𝛼 are fixed. We will give only the expression for
𝑥𝑚𝑎𝑥:

𝑥𝑚𝑎𝑥 = 𝐹0

√(𝜔2
0 − 𝜈2)2 + 𝑏2

𝑚2 𝜈2
(2.323)

For 𝑡 → ∞, the second part, i.e., the term from the driving force 𝑥𝑚𝑎𝑥 sin(𝜈𝑡 + 𝛼),
survives as the exponential decay will have damped the first term. The oscillation will
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have frequency 𝜈 of the driving force. As can be seen, the amplitude of the motion is for
longer times 𝑥𝑚𝑎𝑥.

If the driving frequency 𝜈 ∼ 𝜔0, the amplitude increases strongly. Especially for small
damping, i.e., small 𝑏, the amplitude will increase to high values. This phenomenon is
called resonance:

𝑖𝑓𝑏 → 0𝑎𝑛𝑑𝜈 → 𝜔0𝑡ℎ𝑒𝑛𝑥𝑚𝑎𝑥 → ∞𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 (2.324)

2.6.0.8 Coupled Oscillators
In this course we mostly only consider one oscillator, but of course there could be many
that are coupled in one way or another. Already Christiaan Huygens considered them.

Figure 2.226:  Huygens experiment of weakly coupled pendula.

There are 2 pendula suspended from a common connection, which rests on two chairs. If
you set the pendula in motion, they will be initially out of phase, i.e. the relative position
of the pendula is different. But over time their motion synchronises! What has happend?
Apparently the two pendula are connected, coupled, via the suspension and act on each
other, they are not independent, but influence the motion of the other pendulum.

The following video of weakly coupled metronomes below shows a modern day version
of this phenomena.

Here the pendula are coupled via the ground. This influence is called weak coupling. In
this course we cannot treat this coupling mathematically, but in the second year course
on Classical Mechanics you will learn to study systems like these.

2.6.0.9 Examples
1. Example of resonance: sound waves are exciting a glass. By changing the frequency

of the sound waves to the resonance frequency, the glass starts oscillating with
increasing amplitude until it finally breaks.

2. Driven harmonic oscillator with damping.

Warning

App below needs updating

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from matplotlib.gridspec import GridSpec
from IPython.display import HTML

# Parameters
m = 1
k = 2
b = 0.5

156

https://nl.wikipedia.org/wiki/Christiaan\_Huygens
https://www.youtube.com/embed/DD7YDyF6dUk?si=Zt65wJNNQCosMU5n
https://www.youtube.com/watch?v=CdUoFIZSuX0


F0 = 20
nu = 4
l0 = 200
dx = 0.28 * l0

# Derived parameters
w0 = np.sqrt(k / m)
w = np.sqrt(w0**2 - (b / (2 * m))**2)
phi = np.arctan(-nu * b / m / (nu**2 - w0**2))
xmax = F0 / m / np.sqrt((nu**2 - w0**2)**2 + (b * nu / m)**2)

A = dx - xmax * np.cos(phi)
B = (1 / w) * (-A * b / (2 * m) + xmax * nu * np.sin(phi))

# Time setup
t_stop = 20
fps = 30
dt = 1 / fps
t_vals = np.arange(0, t_stop, dt)

# Position function
def position(t):
    transient = A * np.exp(-b / (2 * m) * t) * np.cos(w * t) + B * np.exp(-
b / (2 * m) * t) * np.sin(w * t)
    steady = xmax * np.cos(nu * t - phi)
    return l0 + transient + steady

x_vals = position(t_vals)

# Steady-state amplitude over range of driving frequencies
nu_range = np.linspace(0, 10, 400)
xmax_range = F0 / m / np.sqrt((nu_range**2 - w0**2)**2 + (b * nu_range /
m)**2)

# Set up figure and gridspec
fig = plt.figure(figsize=(16, 4))
gs = GridSpec(1, 3, width_ratios=[1, 1.5, 1.5])
ax_anim = fig.add_subplot(gs[0])
ax_xt = fig.add_subplot(gs[1])
ax_amp = fig.add_subplot(gs[2])

# --- Animation axis setup ---
ax_anim.set_xlim(0, 500)
ax_anim.set_ylim(-50, 50)
mass_dot, = ax_anim.plot([], [], 'ro', markersize=15)
spring_line, = ax_anim.plot([], [], 'k-', lw=1.5)
# Horizontal L0 line from wall to equilibrium position
l0_line, = ax_anim.plot([0, l0], [0, 0], linestyle='--', color='gray',
label='$L_0$')
ax_anim.legend(loc='upper right', fontsize=8, frameon=False)
time_text = ax_anim.text(0.02, 0.95, '', transform=ax_anim.transAxes)
ax_anim.set_xticks([])
ax_anim.set_yticks([])

# --- x(t) axis setup ---
xt_line, = ax_xt.plot([], [], 'b-')
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ax_xt.set_xlim(0, t_stop)
ax_xt.set_ylim(np.min(x_vals) - 10, np.max(x_vals) + 10)
ax_xt.set_xlabel("$t$ (s)")
ax_xt.set_ylabel("$x$")
ax_xt.set_title("x(t) — Position over Time")
ax_xt.set_xticks([])
ax_xt.set_yticks([])

# --- Steady-state amplitude axis setup ---
amp_line, = ax_amp.plot(nu_range, xmax_range, 'g-')
nu_line = ax_amp.axvline(nu, color='red', linestyle='--', label='$\\nu$')
w0_line = ax_amp.axvline(w0, color='green', linestyle='--', label='$\
\omega_0$')
ax_amp.set_xlim(0, 10)
ax_amp.set_ylim(0, np.max(xmax_range) * 1.1)
ax_amp.set_xlabel("Driving Frequency $\\nu$ (Hz)")
ax_amp.set_title("Steady-State Amplitude vs $\\nu$")
ax_amp.legend(loc='upper right', fontsize=8, frameon=False)
ax_amp.set_yticklabels([])
# Function to draw spring as a zig-zag between 0 and x
def get_spring_coords(x, num_zigs=12, amplitude=10, end_offset=7):
    x_end = x - end_offset  # shorten to avoid overshooting the mass
    xs = np.linspace(0, x_end, num_zigs + 1)
    ys = np.zeros_like(xs)
    ys[1:-1:2] = amplitude
    ys[2::2] = -amplitude
    return xs, ys

def init():
    mass_dot.set_data([], [])
    spring_line.set_data([], [])
    time_text.set_text('')
    xt_line.set_data([], [])
    return mass_dot, spring_line, time_text, xt_line, nu_line, w0_line

def animate(i):
    x = x_vals[i]
    mass_dot.set_data([x], [0])

    # Update spring line with zig-zag
    xs, ys = get_spring_coords(x)
    spring_line.set_data(xs, ys)

    time_text.set_text(f"$t$ = {t_vals[i]:.2f} s")
    xt_line.set_data(t_vals[:i], x_vals[:i])
    return mass_dot, spring_line, time_text, xt_line, nu_line, w0_line

ani = FuncAnimation(fig, animate, frames=len(t_vals), init_func=init,
blit=True, interval=1000*dt)

HTML(ani.to_jshtml())

Animation size has reached 21020492 bytes, exceeding the limit of
20971520.0. If you're sure you want a larger animation embedded, set the
animation.embed_limit rc parameter to a larger value (in MB). This and
further frames will be dropped.
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3. 1940: the Tacoma Narrows Bridge in the state Washington on the West coast of the
USA is brought into resonance by the wind. See the movie clip for the end result.

4. Breaking a HDD hard disk with a song of Janet Jackson

Read here about this truly amazing piece of applied physics on a blog of Microsoft
developer Raimond Chen.

3. The blue sky: Rayleigh scattering (adapted from Mudde (2008)).

Light from the sun (and stars) will have to travel through the atmosphere before reaching
the ground level. On its way it will be subject to absorption and scattering.
When you look on a clear day into the sky its color is blue, everybody knows that. But
few people know why. The reason is found in the scattering properties of the molecules:
the probability of light being scattered by an air molecule is proportional to the wave
length of the light to the power −4, or rephrased: proportional to 𝑓4 (𝑓  the frequency of
the light, the theory of molecular scattering was given first given by Lord Rayleigh).
Thus, blue light of a wavelength of 450nm is compared to red light (𝜆 = 650nm)
(650/450)4 = 4.4 times more likely to be scattered. Consequently, the blue end from the
(white) sun light has a reduced probability to reach our eye directly in comparison with
the red end. And thus most of the scattered light that reaches us is blue: the sky is blue.
We will look at scattering of light by considering a simple molecule made of a fixed
nucleus with one electron orbiting it. The equation of motion of the electron can be
written as that of a harmonic oscillator, with eigen frequency 𝜔0:

𝑚 ̈𝑥 + 𝑘𝑥 = 0 → ̈𝑥 + 𝜔2
0𝑥 = 0 (2.325)

Figure 2.227:  Simple model of electron-light scattering.

When light passes the electron, the electron feels a force since light is an electro-magnetic
wave. The electric field is the dominating force. For light of wave length 𝜆, i.e. angular
frequency 𝜔 = 2𝜋𝑓 = 2𝜋 𝑐

𝜆 , the electric field can be written as 𝐸0 sin 𝜔𝑡. Such a field will
produce a force 𝐹𝑒 = 𝑒𝐸0 sin 𝜔𝑡 on the electron, modifying its equation of motion to:

̈𝑥 + 𝜔2
0𝑥 = 𝑒

𝑚
𝐸0 sin 𝜔𝑡 (2.326)
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We recognize this as the forced harmonic oscillator with solution

𝑥(𝑡) = 𝑐1 sin 𝜔0𝑡 + 𝑐2 cos 𝜔0𝑡 + 𝑒𝐸0
𝑚

sin 𝜔𝑡
𝜔2

0 − 𝜔2 (2.327)

The important part is the last one: the extra motion cause by the passing electric field.
This causes an additional acceleration of the electron: 𝑎(𝑡) = −𝑒𝐸0

𝑚
𝜔2

𝜔2
0−𝜔2 sin 𝜔𝑡.

The electron in its original orbit does not radiate. However, due to the extra acceleration
the electron starts radiating. It sends out an electromagnetic field with the wave length of
the incoming light and an intensity proportional to the square of the acceleration, , i.e.

𝐼 ∝ [ 𝜔2

𝜔2
0 − 𝜔2 ]

2

(2.328)

As the eigen frequency 𝜔0 of the electrons in oxygen and nitrogen is much higher than
the frequency 𝜔 of the incoming light we have that this is basically proportional to
( 𝜔

𝜔0
)

4
. As this radiation by the electron obviously feeds on the incoming light, we find

that the scattering of the light is proportional to the frequency of the incoming light to
the power 4.

6. Second-harmonic generation

Of course the harmonic potential is only a first order approximation around an
equilibrium. An example, for a non-linear force or anharmonic potential effect, is the
generation of second-harmonic generation. If you shine high intensity light onto the
electrons of a molecule, they are pushed out of equilibrium further and if the governing
potential is anharmonic, the electric field response will not only include the incoming
frequency 𝜔 but also higher harmonics 2𝜔, 3𝜔, …, but with much lower intensity. That the
emitted frequencies are occurring in integer multiple of the incident frequency can be
understood either from quantization of light into photons (and the conservation of
energy) or from Fourier analysis of the periodic motion of the electron.

6. Erasmus Bridge & singing cables.

The bridge in Rotterdam, but also others, suffer from long cables that the wind can put
into resonance. Their motion then generates acoustic waves in the audible spectrum.
Listen here to the sound of the cables starting from 1:00 on the website for singing
bridges!

2.6.0.10 Waves and oscillations
In the previous sections, we talked about oscillations of individual particles. Oscillations
can also occur in a more collective mode. And there are plenty of examples: take for
instance a violin or piano string. It is in essence an elastic string suspended between two
fixed points. The string is under tension, that is: its natural length is (slightly) less than
the distance between the two end points. As a consequence, equilibrium position of the
string is a straight line and when brought out of equilibrium there is a net restoring force
much like for the mass-spring system.

However, there are at least two important differences: (1) the restoring force is the net
result from pulling on a small part of the string by its neighbor parts; (2) the entire string
can oscillate in a direction perpendicular to the equilibrium position of the string, making
the problem multi-dimensional.
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We will give here an intuitive derivation of the equation of motion. Don’t worry if you
don’t grasp it fully. This will come back in your studies further down the line.

In the figure below, a part of the string is drawn with special attention to a small part (the
red line). On this small part the tension from the left and right side is pulling on the red
part. This is visualized by the two blue arrows. In the inset, this is drawn at a larger scale.
The two blue arrows are equal in magnitude (𝑇 ) as the tension in the string is the same
everywhere. But the direction in which the two blue forces are pulling is slightly different
as the string is curved.

Figure 2.228:  Forces on a small part of a string; inset shows an exaggeration of the
vertical components of the forces.

If we call the angle of the blue forces with the 𝑥-axis 𝜃, then 𝜃1 ≠ 𝜃2. This makes that a
net force is action on the small red piece. And according to Newton’s second Law, the
small red mass must accelerate.

Let’s set up N2 for the red piece. The problem is 2-dimensional, so we set up N2 for the 𝑥
and 𝑦-direction:

𝑚𝑑2𝑥
𝑑𝑡2

= −𝑇 cos 𝜃1 + 𝑇 cos 𝜃2

𝑚𝑑2𝑦
𝑑𝑡2

= −𝑇 sin 𝜃1 + 𝑇 sin 𝜃2

(2.329)

Next, we simplify by only looking at situations where the angle 𝜃1 and 𝜃2 are small. The
we can approximate the sin and cos terms: if 𝜃 ≪ 1 then sin  𝑡ℎ𝑒𝑡𝑎 ≈ 𝜃 and cos 𝜃 ≈ 1 and
we can write

𝑚𝑑2𝑥
𝑑𝑡2

= −𝑇 + 𝑇 = 0

𝑚𝑑2𝑦
𝑑𝑡2

= −𝑇𝜃1 + 𝑇𝜃2

(2.330)

Thus: for the 𝑥 direction we don’t need to worry, nothing interesting happening there.

For the 𝑦-direction we face that we have too many unknowns. We need relations between
𝜃1, 𝜃2, 𝑦 and 𝑥. We are going to use again that 𝜃 ≪ 1 but know to make it seemingly more
complex.

If 𝜃 ≪ 1 then tan 𝜃 ≈ 𝜃. And we are going to replace 𝜃 by tan 𝜃. Is that smart??? Now we
get trigonometry back in the equation!! Don’t worry. We use the tan 𝜃 in another way. It
is also the direction of the tangent to the curve the spring is making at the point where
we are looking. In formula:

tan 𝜃 = 𝑑𝑦
𝑑𝑥

(2.331)
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And this is the coupling between angles and coordinates that we have been looking for.

We are going to plug this in in N2 for the 𝑦-direction. But before doing so: the left
position of the red piece is at position 𝑥. So instead of label ‘1’ we will use subscript 𝑥.
Similarly, the right end of the red piece is at 𝑥 + 𝑑𝑥. Thus we can write

𝑚𝑑2𝑦
𝑑𝑡2

= −𝑇[𝑑𝑦
𝑑𝑥

]
𝑥

+ 𝑇[𝑑𝑦
𝑑𝑥

]
𝑥+𝑑𝑥

(2.332)

It looks still pretty messy but we are almost there. The mass of the red piece obviously
scales with its length. So if we introduce 𝜇 as the mass of the string per unit length, we
can write for the mass of the red piece: 𝑚 = 𝜇𝑑𝑥. Our equation can now be written as

𝑑2𝑦
𝑑𝑡2

= 𝑇
𝜇

[𝑑𝑦
𝑑𝑥]

𝑥+𝑑𝑥
− [𝑑𝑦

𝑑𝑥]
𝑥

𝑑𝑥
(2.333)

We recognize on the right hand side the second derivative of 𝑦 with respect to 𝑥. Whereas
on the left hand we see differentiating with respect to 𝑡.

𝑑2𝑦
𝑑𝑡2

= 𝑇
𝜇

𝑑2𝑦
𝑑𝑥2 (2.334)

To make clear that we mean on the left hand side we mean: take the derivative only with
respect to time we use 𝜕𝑡 instead of 𝑑𝑡. Similarly on the right hand 𝜕𝑥 instead of 𝑑𝑥. And
we get our final result replacing 𝑇𝜇  by 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)2

𝜕2𝑦
𝜕𝑡2

= 𝑣2 𝜕2𝑦
𝜕𝑥2 (2.335)

This equation is called the wave equation and you will find it back in many branches of
science and engineering. To solve it, you need advance calculus and that will certainly
come in future courses. Here we will look at some global aspects of the equation.

• units of 𝑣2 : 𝑚2/𝑠2. Thus 𝑣 is a kind of velocity, at least based on its dimension.
• if 𝑦(𝑥, 𝑡) is such that it only depends on 𝑥 ± 𝑣𝑡, that is 𝑦(𝑥, 𝑡) = 𝑦(𝑥 − 𝑣𝑡) then no

matter what 𝑦 as function is, it is always a solution to the wave equation.

This is straightforward to prove: given 𝑦(𝑥, 𝑡) = 𝑦(𝑥 − 𝑣𝑡) then call 𝑠 ≡

𝜕𝑦
𝜕𝑡

= 𝑑𝑦
𝑑𝑠

𝜕𝑠
𝜕𝑡⏟

=𝑚𝑎𝑡ℎ.𝑠𝑓(−𝑣)

(2.336)

Note the meaning of 𝜕𝑡: differentiate 𝑠 = 𝑥 − 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)𝑡 as if 𝑥 is a constant, not
depending on 𝑡.

We can differentiate this once more:

𝜕2𝑦
𝜕𝑡2

= 𝜕
𝜕𝑡

(−𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)𝑑𝑦
𝑑𝑠

) = −𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣) 𝑑
𝑑𝑠

(𝑑𝑦
𝑑𝑠

)𝜕𝑠
𝜕𝑡

= 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)2 𝑑2𝑦
𝑑𝑠2(2.337)

Subsequently we look at 𝜕2𝑦
𝜕𝑥2 :

𝜕2𝑦
𝜕𝑥2 = 𝜕

𝜕𝑥
(
((
((
(𝑑𝑦

𝑑𝑠
𝜕𝑠
𝜕𝑥⏟
=1 )

))
))
)

= 𝑑
𝑑𝑠

(𝑑𝑦
𝑑𝑠

)𝜕𝑠
𝜕𝑥

= 𝑑2𝑦
𝑑𝑠2 (2.338)
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If we now substitute these two results in the wave equation we see:

𝜕2𝑦
𝜕𝑡2

− 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)2 𝜕2𝑦
𝜕𝑥2 = 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)2 𝑑2𝑦

𝑑𝑠2 − 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)2 𝑑2𝑦
𝑑𝑠2 = 0 ⇒

𝜕2𝑦
𝜕𝑡2

= 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)2 𝜕2𝑦
𝜕𝑥2

(2.339)

And we see that our choice for 𝑦(𝑥, 𝑡) = 𝑦(𝑥 − 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)𝑡) automatically obeys the
wave equation.

From the above we also learn that if the string has a certain ‘amplitude’ 𝑦 at position 𝑥 on
time 𝑡 a little later this same amplitude will show up at a position a bit further along the
string. Argument: given 𝑥 and 𝑡 then at (𝑥, 𝑡) the amplitude of the string is 𝑦(𝑥 −
𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)𝑡) and a little later, at 𝑡 + Δ𝑡 we can look at position 𝑥 + 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)Δ𝑡:
there 𝑦(𝑥 + Δ𝑥, 𝑡 + Δ𝑡) is

𝑦(𝑥 + Δ𝑥, 𝑡 + Δ𝑡) = 𝑦(𝑥 + 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)Δ𝑡 − 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)(𝑡 + Δ𝑡)) = 𝑦(𝑥 − 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)𝑡) = 𝑦(𝑥, 𝑡)(2.340)

This actually means, that a traveling wave can be present in the string. We now this from
our childhood when we probably all have been playing with a long rope making waves in
it by quickly moving one end up and down.

The wave equation has as constant 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)2. We have identified this as a velocity and
we now understand that it is the velocity with which a wave travels. But since the
equation contains the square of the velocity, we conclude that if we have a solution with
+𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣), then also a solution with −𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣) holds. In other words: waves can
travel in 2 directions and they do so with the same speed (in magnitude).

In the figure below, a wave is shown that starts as seemingly one hump. But it actually is
two traveling waves on a rope.

Moreover, the rope has a fixed end at the left and a free one at the right. Notice the
difference in reflection of the waves at both ends.

Figure 2.229:  Forces on a small part of a string; inset shows an exaggeration of the
vertical components of the forces.

2.6.0.10.1 Wave characteristics
Waves are omnipresent. We find them in musical instruments e.g. the violin but also in
flutes where the wave is directly in the air in the instrument. We have them in water and
air: waves on the oceans, waves when we speak. There are waves in solid materials for
instance after an earthquake. We use waves in telecommunication.
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Why are waves so generally found? They are the analogue of the harmonic oscillator.
And thus, many systems in that are brought a bit out of equilibrium will try to go back to
equilibrium, over shoot it and end up in a wavy motion.

Wave Length

Waves are often sinusoidal and if not, via Fourier Analysis they can be decomposed of a
set of sinusoidal waves that built together the pattern we observe.

A sinusoidal wave is of the form

𝑦(𝑡) = 𝐴 sin(2𝜋𝑓𝑡) (2.341)

with 𝑓  its frequency (and thus 𝜔 = 2𝜋𝑓  its angular frequency).

As we have seen above, in general the wave is also a function of position:

𝑦(𝑥, 𝑡) ∼ 𝐴 sin(𝑥 − 𝑣𝑡) (2.342)

How can we connect these two forms? First, we need to realize that the last equation has
a dimensional issue: what is the sinus of say 7 meter? In other words, the argument of the
sin-function should be dimensionless. So we write is in a different form, introducing the
frequency in it:

𝑦(𝑥, 𝑡) = 𝐴 sin( 2𝜋𝑓
𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)

𝑥 − 2𝜋𝑓𝑡) (2.343)

This seems unnecessary complicated. But it is not! The factor 𝑓
𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)  has dimension 1

over length. If we call it 𝑓
𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣) ≡ 1

𝜆  we can write

𝑦(𝑥, 𝑡) = 𝐴 sin[2𝜋(𝑥
𝜆

− 𝑓𝑡)] (2.344)

Interpretation: for a fixed value of 𝑡 the wave is periodic in space with period 𝜆. This is
what we already know: the wave has a wave length 𝜆.

On the other hand: for a fixed position 𝑥 the point at 𝑥 oscillates with a frequency 𝑓  and
thus has a period 𝑇 = 1

𝑓 . Note that 𝜆 and 𝑓  are coupled to each other:

𝜆 ⋅ 𝑓 = 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣) (2.345)

Example: Guitar string and frequency

Adapted from Pols (2021)

Guitar strings produce their sound by transverse resonant standing waves [2]. The
natural frequency of a guitar string depends on the wavelength and the wave velocity:
𝑓0 = 𝑣

𝜆0
 with 𝜆0 = 2𝐿 where 𝐿 is the length of the string. As shown above, the wave

velocity is dependent on the string’s tension and material: 𝑣 = √𝐹
𝜇  where 𝜇 is the

mass per unit length.

As every guitar player knows, changing the tension of the string, changes the
frequency (tuning). One increases the tension by twisting the tuning knob which
effectively stretches the string. The change in tension can be calculated using: 𝐹 =
𝜎𝐴 = 𝐸𝜀𝐴, with 𝜀 = Δ𝑙

𝑙0
, 𝐴 the cross sectional area and 𝐸 Young’s modulus.

Rearranging yields:

𝑓2 = 𝐸𝐴
4𝜇𝐿3 Δ𝑙 + 𝑓2

0 (2.346)
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2.6.0.10.2 Standing waves versus traveling waves
If we look at the motion of the string on a violin closely, we will not see traveling waves
running from one side of the string to the other. Instead, we see all parts of the string
moving up and down collectively: they have formed a standing wave. that is a wave that
does not travel, but has a fixed, stationary shape whose amplitude various with time.

For a string with two ends fixed like on a piano or violin, the string can only show
standing waves that ‘fit’. These standing waves are sinusoidal and their wave length
should be such that the beginning and end of the string don’t oscillate. In the figure below
four possibilities are shown.

Figure 2.230:  Standing waves in a string.

We see that there is a simple relation between the length of the string, 𝐿 and the possible
wave length, 𝜆 of the standing waves:

𝑛
2
𝜆 = 𝐿 ⇔ 𝜆 = 2𝐿

𝑛
𝑤𝑖𝑡ℎ𝑛 ∈ 𝑁 (2.347)

Further we see that the smaller the wavelength, the faster the oscillation. This is due to
the relation 𝜆 ⋅ 𝑓 = 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣) that still holds: 𝑓 = 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)

𝜆 = 𝑛𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)
2𝐿 .

The traveling waves had as mathematical form sin(𝑥 − 𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣)𝑡). The standing
waves take forms like sin 𝑥

𝜆 ⋅ sin(2𝜋𝑓𝑡). You will learn much more about this in e.g.
Fourier Analysis classes.

2.6.0.10.3 Water waves and Sound waves
It is not necessary that a wave is caused by a tension in the material that tries to restore
the equilibrium position. The restoring force can be of a different nature. A well know
example is the water waves that we see on lakes and seas. Here gravity is the restoring
force: it tries to pull a crest down and push a through up. The water inertia causes
overshoot resulting in oscillations, that we call waves. In dealing with waves, we usually
don’t use the frequency 𝑓 , but instead the angular velocity 𝜔 = 2𝜋𝑓 . Similarly, frequently
the wave length 𝜆 is replaced by the wavenumber 𝑘 ≡ 2𝜋

𝜆 . Note that these two quantities
are also related to each other by the speed of the waves: 𝜆 ⋅ 𝑓 = 2𝜋

𝜆
𝜔
2𝜋 = 𝜔

𝑘 =
𝑚𝑎𝑡ℎ.𝑠𝑓(𝑣).

For water waves (with large wave length) the angular momentum and the wave number
are coupled to the depth, ℎ, of the water:

𝜔2 = 𝑔𝑘 tanh(𝑘ℎ) (2.348)
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From this we learn that waves on deep water travel much faster than on shallow water.
This can be seen on our shores: the waves coming from the open sea are slowed down
when the approach our beaches. But behind them the fast ones still come in. As a
consequence, the wave gets squeezed in length and thus must get higher. This can be
extreme with dramatic consequences: the Tsunami. The wave of the Tsunami is formed
out in the open, where the sea is very deep. Here it travels at a very high speed which
also means that it is a long wave. The Tsunami waves can travel at velocities of 200m/s
and have wave length of hundreds of kilometers. However at full sea their amplitude is in
the centimeter, decimeter range. A ship at full sea will hardly notice the passing Tsunami
wave. But when the approach the shore, the front of the wave is slowed down to tens of
m/s. As the back is still coming in at full speed the wave amplitude has to increase. And
thus a huge wave in terms of amplitude storms towards the shore. A wall of water is seen
coming, crushing everything in its way.

Sound waves are another type of waves that occur frequently. They can exist in solids,
liquids and gasses. In contrast to the waves we have discussed so far, the amplitude is not
perpendicular to the direction of traveling. It is what we call a longitudinal wave that
oscillates in the same direction as it moves. The other waves are called transversal waves.

For sound waves it is the pressure that is the restoring force. The ‘crest’ is compressed
material, the ‘through’ is an expansion part. Newton was intrigued by sound waves and
provided a theory for them. He found that the speed of sound in air, according to his
theory, was about 290 m/s. In reality it is some 340 m/s. Newton was well aware of the
mismatch. But he couldn’t find a good explanation. It took another 100 years for Pierre
Laplace corrected Newton’s work and arrived at the correct answer. Newton did not
know that sound is connected to adiabatic compression. He couldn’t as the entire concept
was not know. Laplace realized that Newton basically had made an isothermal solution
and corrected this.

2.6.1 On Taylor expansion

Warning

Text should be update, with the new app below.

import numpy as np
import matplotlib.pyplot as plt
import ipywidgets as widgets
from ipywidgets import interact
import math

x = np.linspace(0,2*np.pi,1000)
y = np.sin(x)

def taylor_series(x, n):
    ts = np.zeros_like(x)
    for k in range(int(n)):
        ts += ((-1)**k * x**(2*k+1)) / math.factorial(2*k+1)
    return ts

def update(n):
    plt.clf()
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    plt.figure()
    
    plt.plot(x,y,'k.')
    plt.plot(x,taylor_series(x,n))
    
    plt.ylim(-5,5)
    plt.show()

# Use FloatSlider for smooth interaction
interact(update, n=widgets.FloatSlider(min=1, max=20, step=1, value=4))
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Exercise 2.231: 🌶

A massless spring (spring constant 𝑘) is suspended from the ceiling. The spring has an
unstretched length 𝑙0. At the other end is a point particle (mass 𝑚).

• Make a sketch of the situation and define your coordinate system.
• Find the equilibrium position of the mass 𝑚.
• Set up the equation of motion for 𝑚.
• Solve it for the initial condition that at 𝑡 = 0 the mass 𝑚 is at the equilibrium

position and has a velocity 𝑣0.

Exercise 2.232: 🌶 🌶

Same question, but now two springs are used. Spring 1 has spring constant 𝑘; spring 2
has 2𝑘. Both have the same unstretched length 𝑙0.

• The two springs are used in parallel, i.e., both are connected to the ceiling, and 𝑚
is at the joint other end of the springs.

• Both springs are in series, i.e., spring 1 is suspended from the ceiling, and the
other one is attached to the free. The particle is fixed to the free end of the
second spring.

2.6.2 Exercises, examples & solutions

2.6.2.1 Exercises
Here are some exercises that deals with oscillations. Make sure you practice IDEA.

2.6.2.2 Experiment & Simulation

Mass spring

Find a rubber band and use nothing but a mass (that you are not allowed to weigh)
that you can tie one way or the other to the spring, a ruler, and the stopwatch/clock
on your mobile.Set up an experiment to find the mass , the spring constant , and the
damping coefficient .Don’t forget to make a physics analysis first, a plan of how to
find both  and .From Wikimedia Commons: bands, CC-SA 4.0; apple, CC-BY 2.0, ;
phone, PD; ruler, CC-BY 4.0.
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Exercise 2.233: 🌶

A mass 𝑚 is attached to two springs. The other ends of the springs are fixed and can
not move. The distance between these point is 2𝑙0. The mass can move only in the
horizontal direction and there is no gravity. See the figure below for a sketch.

The springs are identical: both have rest length 𝑙0 and spring constant 𝑘. Based on
symmetry, we take the origin in the center of the figure.

We are going to repeat the same analysis as in the previous exercises.

• Make a sketch of the situation and define your coordinate system.
• Find the equilibrium position of the mass 𝑚.
• Set up the equation of motion for 𝑚.
• Solve it for the initial condition that at 𝑡 = 0 the mass 𝑚 is at the equilibrium

position and has a velocity 𝑣0.

Exercise 2.235: 🌶 🌶

The same as above, but now the length between the two point where the spring are
attached to is 𝑙0 instead of 2𝑙0.

Note

In the figure 𝑘, 𝑙0 denotes the characteristics of the springs.

• Make a sketch of the situation and define your coordinate system.
• Find the equilibrium position of the mass 𝑚.
• Set up the equation of motion for 𝑚.
• Solve it for the initial condition that at 𝑡 = 0 the mass 𝑚 is at the equilibrium

position and has a velocity 𝑣0.
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Exercise 2.237: Simulation

If the force acting on a particle is conservative, a potential energy can be defined. The
sum of kinetic and potential energy is then constant: (mechanical) energy is
conserved.
However, if the force is not a conservative one, mechanical energy is not conserved.
The force will perform work on the particle. The total energy, if we include the work
done, is still conserved. In many real life cases, the work done by non-conservative
forces shows up as heat.

Energy conservation of a mass-spring
First, we will consider a mass 𝑚, suspended on a spring (rest length 𝑙0 en spring
constant 𝑘). The spring is at a fixed position at one end, while the mass 𝑚 is attached
at the other end. 𝑚 is displaced by an amount Δ𝑥 and then released without initial
velocity.

Task:
Set up the analysis of this problem. It can be solved analytically.

• Make a sketch
• Set up a model
• Solve the model
• Show that energy is conserved: the sum of kinetic and potential energy is

constant.
• Make a python programme that outputs a plot of the kinetic, potential and total

energy as a function of time.

Friction: work done and energy conservation We could introduce a frictional force
that will result in damping of the oscillation. A common example is having a friction
that is proportional to the velocity of the mass 𝑚 and works against the direction of
motion:

𝐹𝑓 = −𝑏𝑣

with 𝑏 a proportionality constant. Note that we are taking the problem as one-
dimensional.

We could solve this problem analytically, but it is illustrative to do it numerically as
we can then easily compute the work done the friction force.

So, the task is:

• Make a sketch
• Set up a model
• Make a python programme that outputs a plot of the kinetic, potential and total

mechanical energy (that is the sum of kinetic and potential energy) as a function
of time.

• Compute the work done by the friction force and plot this also as function of
time.

Take the following parameters: 𝑙0 = 20 cm, Δ𝑥 = 1 cm, 𝑚 = 1 kg, 𝑘 = 1 N/m, 𝑏 =
0.1 Ns/m

It is instructive to change the time step 𝑑𝑡 while keeping the total time (that is 𝑁 ⋅ 𝑑𝑡)
constant. You will notice that for ‘large’ time steps, it seems that energy is not
conserved (of course taking into account the work done by the friction force), but that
by making the time step smaller conservation of energy seems to be more and more
obeyed. This is a consequence of numerical errors. The laws of physics are clear:
energy must be conserved.
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Solution 2.238: Solution to Exercise 1

Sketch; 𝑧 = 0 is when the mass is 𝑙0 below the ceiling.

Equilibrium position of the mass 𝑚:

∑ 𝐹 = 0 → 𝐹𝑣 − 𝑚𝑔 = 0 (2.349)

Force of the spring: 𝐹𝑣 = −𝑘(𝑙 − 𝑙0) = −𝑘𝑧. Thus

−𝑘𝑧𝑒𝑞 − 𝑚𝑔 = 0 → 𝑧𝑒𝑞 = −𝑚𝑔
𝑘

(2.350)

Equation of motion for 𝑚: set up N2

𝑚𝑑𝑣
𝑑𝑡

= −𝑘𝑧 − 𝑚𝑔 (2.351)

Solution with 𝑧(0) = 𝑧𝑒𝑞 and 𝑣(0) = 𝑣0:

homogeneous part of the equation: 𝑚𝑑𝑣
𝑑𝑡 + 𝑘𝑧 = 0

𝑧ℎ𝑜𝑚(𝑡) = 𝐴 cos 𝜔0𝑡 + 𝐵 sin 𝜔0𝑡 (2.352)

with 𝜔2
0 = 𝑘

𝑚

special solution: 𝑧𝑠 = −𝑚𝑔
𝑘

general solution:

𝑧(𝑡) = 𝑧ℎ𝑜𝑚(𝑡) + 𝑧𝑠(𝑡) = 𝑧ℎ𝑜𝑚(𝑡) = 𝐴 cos 𝜔0𝑡 + 𝐵 sin 𝜔0𝑡 − 𝑚𝑔
𝑘

(2.353)

initial conditions:

𝑧(0) = 𝑧𝑒𝑞 = −𝑚𝑔
𝑘

→ 𝐴 = 0 (2.354)

and

𝑣(0) = 𝑣0 → 𝑣0 = 𝜔0𝐵 → 𝐵 = 𝑣0
𝜔0

(2.355)

Thus, the solution is

𝑧(𝑡) = −𝑚𝑔
𝑘

+ 𝑣0
𝜔0

sin 𝜔𝑜𝑡 (2.356)
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Solution 2.240: Solution to Exercise 2

Sketch; 𝑧 = 0 is when the mass is at 𝑙0 below the ceiling. Now we have 2 springs, one
with spring constant 𝑘1, the other with 𝑘2. Both have the same rest length 𝑙0

Equilibrium position of the mass 𝑚:

∑ 𝐹 = 0 → 𝐹𝑣1 + 𝐹𝑣2 − 𝑚𝑔 = 0 (2.357)

Forces of the springs: 𝐹𝑣1 = −𝑘1(𝑙 − 𝑙0) = −𝑘1𝑧 and 𝐹𝑣2 = −𝑘2(𝑙 − 𝑙0) = −𝑘2𝑧.
Thus

−𝑘1𝑧𝑒𝑞 − 𝑘2𝑧𝑒𝑞 − 𝑚𝑔 = 0 → 𝑧𝑒𝑞 = − 𝑚𝑔
𝑘1 + 𝑘2

(2.358)

Equation of motion for 𝑚: set up N2

𝑚𝑑𝑣
𝑑𝑡

= −(𝑘1 + 𝑘2)𝑧 − 𝑚𝑔 (2.359)

Thus we conclude, that the exercise is basically the same: all we have to do is replace
𝑘 by 𝐾𝑡𝑜𝑡 = 𝑘1 + 𝑘2

𝑚𝑑𝑣
𝑑𝑡

= −𝑘𝑡𝑜𝑡𝑧 − 𝑚𝑔 (2.360)

The solution with 𝑧(0) = 𝑧𝑒𝑞 and 𝑣(0) = 𝑣0 is thus

𝑧(𝑡) = − 𝑚𝑔
𝑘𝑡𝑜𝑡

+ 𝑣0
𝜔0

sin 𝜔𝑜𝑡 (2.361)

with 𝜔2
0 = 𝑘𝑡𝑜𝑡

𝑚
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Solution 2.242: Solution to Exercise 3

Again, we have two springs acting on the mass. However, they are no on opposite
sides. We expect on symmetry arguments that the equilibrium will be in the middle,
i.e at 𝑥 = 0.

If the mass is positioned to the right of 𝑥 = 0, spring 1 is extended beyond its rest
length and will pull in the negative 𝑥-direction:

𝐹𝑣1 = −𝑘(𝑙 − 𝑙0) = −𝑘𝑥 (2.362)

Spring 2 will than be shorter than its rest length and will push to the negative 𝑥-
direction:

𝐹𝑣2 = 𝑘(𝑙 − 𝐿0) = −𝑘𝑥 (2.363)

Thus, equilibrium is reached when

∑ 𝐹 = 𝐹𝑣1 + 𝐹𝑣2 = 0 → −2𝑘𝑥 = 0 → 𝑥𝑒𝑞 = 0 (2.364)

as we anticipated.

Equation of motion for 𝑚: set up N2

𝑚𝑑𝑣
𝑑𝑡

= −𝑘𝑥 − 𝑘𝑥 = −2𝑘𝑥 (2.365)

Thus we conclude, that the exercise is basically the same: all we have to do is replace
𝑘 by 𝑘𝑡𝑜𝑡 = 2𝑘

𝑚𝑑𝑣
𝑑𝑡

= −2𝑘𝑥 (2.366)

General solution 𝑥(𝑡) = 𝐴 sin 𝜔0𝑡 + 𝐵 cos 𝜔0𝑡 with 𝜔2
0 = 2𝑘

𝑚 .

Like in the previous exercises, it is now a matter of specifying the initial conditions
and finding 𝐴 and 𝐵.
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Solution 2.244: Solution to Exercise 4

Again, we have two springs acting on the mass. Now they don’t fit both with their
rest length. The will be compressed and try to lengthen. However, based on symmetry
we still do expect that 𝑥 = 0 is the equilibrium position.

If the mass is positioned to the right of 𝑥 = 0, spring 1 stille too short and will push to
the right:

𝐹𝑣1 = −𝑘(𝑙 − 𝑙0) = −𝑘(𝑙0
2

+ 𝑥 − 𝑙0) = 𝑘(𝑙0
2

− 𝑥) (2.367)

Spring 2 will than be even shorter and will push to the negative 𝑥-direction:

𝐹𝑣2 = 𝑘(𝑙0
2

− 𝑥 − 𝑙0) = −𝑘(𝑙0
2

+ 𝑥) (2.368)

Thus, equilibrium is reached when

∑ 𝐹 = 𝐹𝑣1 + 𝐹𝑣2 = 0 → 𝑘(𝑙0
2

− 𝑥) − 𝑘(𝑙0
2

+ 𝑥) = −2𝑘𝑥 = 0 → 𝑥𝑒𝑞 = 0(2.369)

as we anticipated.

Equation of motion for 𝑚: set up N2

𝑚𝑑𝑣
𝑑𝑡

= −𝑘𝑥 − 𝑘𝑥 = −2𝑘𝑥 (2.370)

Thus we conclude, 𝑘𝑡𝑜𝑡 = 2𝑘, which is identical to the previous exercise!

2.6.2.3 Answers
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2.7 Collisions

2.7.1 What are collisions?
In daily life we do understand what a collision is: the bumping of two objects into each
other. From a physics point of view, we see it slightly different. The objects don’t have to
touch. It is sufficient if they undergo a mutual interaction ‘with a beginning and an end’.
What do we mean by this?

Figure 2.246:  Collision of two particles.

Firstly, the mutual interaction means that the objects interact with each other through a
mutual force, i.e. a force (pair) that obeys Newton’s third law.
Secondly, we assume that this force works over a small distance only. Or re-phrased we
will only consider the situation before the objects feel the force and compare that to after
they have felt it. We don’t bother about the details of the motion of the objects during
their interaction. Hence, when we depict a collision as in Figure 1, we usually draw the
situation before the collision, then some kind of ‘comic way’ of showing the collision and
finally we draw the outcome of the collision, so after the interaction. In many cases,
people leave the middle part out of their drawing.

There are two principle types of collisions to distinguish: elastic and inelastic collisions.
For an elastic collision the kinetic energy is conserved, whereas for an inelastic that is not
the case. In the latter case, energy can be converted into deformation or heat.

Since the objects interact under the influence of their mutual interaction, we have
conservation of momentum:

∑
𝑖

⃗𝑝𝑏𝑒𝑓𝑜𝑟𝑒
𝑖 = ∑

𝑖
⃗𝑝𝑎𝑓𝑡𝑒𝑟
𝑖 (2.371)

Why? No external forces implies constant total momentum.
Shooting coins

Line up two coins on a table, placed edge to edge. Then position a third coin in front
of them, a short distance away. Push the coin in the middle hard down.Now use your
other hand to flick the third coin strongly, aiming to hit the middle coin and cause a
collision.What happens? Compare the velocities, qualitatively, before and after the
collision.Try varying the setup—for example, using a heavier coin or a lighter one as
the target—and observe the effects.
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2.7.2 Elastic Collisions
For an elastic collision the kinetic energy is conserved by definition (next to the
conservation of momentum). That is the sum of the kinetic energy before the collision is
the same as the sum after the collision. This type of collision is also called hard-ball
collision: as with colliding billiard balls no energy is dissipated into heat or deformation.

Figure 2.247:  A simulation on collisions. Try to change the mass, velocity, angle of
contact…

For elastic collisions the interaction force needs to be conservative. Then, a potential
energy exists. And this energy is such that the objects have the same potential energy
before as after the collision. Consequently energy conservation leads to:

𝐸𝑘𝑖𝑛,𝑏𝑒𝑓𝑜𝑟𝑒 + 𝑉𝑏𝑒𝑓𝑜𝑟𝑒 = 𝐸𝑘𝑖𝑛,𝑎𝑓𝑡𝑒𝑟 + 𝑉𝑎𝑓𝑡𝑒𝑟⏟
=𝑉𝑏𝑒𝑓𝑜𝑟𝑒

⇒ 𝐸𝑘𝑖𝑛,𝑏𝑒𝑓𝑜𝑟𝑒 = 𝐸𝑘𝑖𝑛,𝑎𝑓𝑡𝑒𝑟 (2.372)

2.7.2.1 Solving collision problems
Given a collision experiment where the initial situation before the collision is known,
how do we compute the situation after the collision? What will the velocities of the object
be?

Consider a head-on collision of two point particles on a line as shown in Figure 4. One
particle with mass 3𝑚 is initially at rest (𝑢 = 0), the other with mass 2𝑚 has velocity 2𝑣.
What are the velocities 𝑣′, 𝑢′ of the particles after the collision?

Figure 2.248:  Example of a 1D elastic collision.

We can write down two equations using conservation of momentum and kinetic energy
before and after the collision

2𝑚(2𝑣) + 0
1
22𝑚(2𝑣)2 + 0

=
=

2𝑚𝑣′ + 3𝑚𝑢′ (∗)
1
22𝑚𝑣′2 + 1

23𝑚𝑢′2 (2.373)

We have two equations and two unknowns (𝑣′, 𝑢′), therefore we can in principle solve
this problem. The question is, what is the best strategy to do so? A strategy is needed
especially since one equation involves the square of the velocity.

We first bring the velocities 𝑣, 𝑣′ and 𝑢, 𝑢′ to the same side.

2𝑚(2𝑣 − 𝑣′)
1
22𝑚(4𝑣2 − 𝑣′2)

=
=

3𝑚𝑢′
1
23𝑚𝑢′2 (2.374)

Now we divide the two equations (verify yourselves!), this makes the solution very easy
as the squares of the velocities always divide out.

⇒ 2𝑣 + 𝑣′ = 𝑢′ (∗ ∗) (2.375)

We can use this to find both unknowns by smartly adding equations (∗) and (∗ ∗).
Smartly in the sense that we can multiply either of the equations with a scalar in such
way that one quantity can be discarded.
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4𝑣
2𝑣

−−−8𝑣

2𝑣
−−−−2𝑣

= 2𝑣′ + 3𝑢′
= −𝑣′ + 𝑢′ | ∗ 2

= 5𝑢′
⇒ 𝑢′ = 8

5𝑣
= −𝑣′ + 𝑢′ | ∗ −3

= 5𝑣′
⇒ 𝑣′ = −2

5𝑣

4𝑣 = 2𝑣′ + 3𝑢′ (2.376)

This solution strategy always works. NB: you need to practice this. Although it is
conceptually easy, we often see that students have problems when actually solving for the
2 unknowns.

Figure 2.249:  Solving the problem

Vpython simulation

Above we provided a Vpython simulation. Change the code in order to verify the
above solution.

Actually, now we think about this strategy: isn’t it strange, the kinetic energy equation is
squared in our unknowns. Shouldn’t we expect 2 solutions?

The answer is yes: there ought to be 2 solutions. Where is the second one? Note that
when dividing the two equations, we have to make sure that we do not divide by 0. It is
very well possible that we do so: suppose 𝑢′ = 0, then also 2𝑣 − 𝑣′ = 0 and we can not do
the division. But what does that mean: 𝑢′ = 0 and 2𝑣 − 𝑣′ = 0? Well, of course, then we
have after the collision that the incoming particle 2𝑚 still has velocity 2𝑣 and the other
particle 3𝑚 is still at rest.

In retrospect: of course this must be one of the solutions to the problem. We haven’t
specified anything about the interaction force. But suppose it is absent, that is, the
particles don’t interact at all. Then of course the situation before the collision (a bit
strange calling this a collision, but anyway), will still be present after the ‘collision’. If
nothing happens to the particles, then obviously the sum of the momentum as well as of
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the kinetic energy stays the same. This actually provides a great check of your work: do
you recover the initial conditions?

2.7.2.2 Collisions in a plane
Consider now a 2D elastic collision such that the two particles collide in the origin,
Figure 6.

Figure 2.250:  Example of a 2D elastic collision.

If we write down the equation of conservation of momentum (in 𝑥, 𝑦 components) and of
kinetic energy, we get

2𝑚(2𝑣) + 0
0 + 3𝑚𝑣

1
22𝑚(2𝑣)2 + 1

23𝑚𝑣2

=
=
=

2𝑚𝑣′𝑥 + 3𝑚𝑢′𝑥
2𝑚𝑣′𝑦 + 3𝑚𝑢′𝑦

1
22𝑚𝑣′2 + 1

23𝑚𝑢′2
(2.377)

Now we have 4 unknowns (𝑣′𝑥, 𝑣′𝑦, 𝑢′𝑥, 𝑢′𝑦) but only 3 equations. The outcome seems
not to be determined by the initial condition… Of course, that cannot be the case (Think
shortly why?). The outcome is fully determined by the initial conditions, but we did not
set up the equations in the best way because we did not first transform the problem into a
1D problem such that the collision is head-on.

We can use a Galilean Transformation to put one particle at rest. Here we set the blue
particle to rest by subtracting −2𝑣 from its velocity, that is we move with the blue particle
(prior to the collision). The corresponding Galilean Transformation is

𝑥′
𝑦′

=
=

𝑥 − 2𝑣𝑡
𝑦 (2.378)

The red particle now has velocity (−2𝑣, 𝑣). The problem is still 2D.

Figure 2.251:  Applying the Galilean Transformation.
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Next, we can rotate the coordinate system, to obtain a 1D head-on collision that we can
solve as above.

Figure 2.252:  Rotating the coordinate system.

We see that we now have a 1-dimensional elastically collision with a particle of mass 3𝑚
coming in over the 𝑥"-axis with velocity −

√
5𝑣. It will collide with a particle of mass 2𝑚

which is at rest. We know how to solve this problem and find the velocities of both
particles after the collision. If we do this, we find that after the collision the velocity of the
blue particle is 𝑈 ′′

𝑥′′ = −6
5
√

5𝑣 and of the red particle 𝑉 ′′
𝑥′′ = −1

5
√

5𝑣. Note that we have
specified these velocity in the (𝑥", 𝑦") coordinate system.

Next steps would be to convert the velocities back to the initial coordinate frame. That is
a bit cumbersome, but again conceptually easy. The final answer in the original frame of
reference is:

2𝑚 :
3𝑚 :

𝑣′𝑥 = −2
5𝑣,

𝑢′𝑥 = 8
5𝑣,

𝑣′𝑦 = 6
5𝑣

𝑢′𝑦 = 1
5𝑣

(2.379)

Figure 2.253:  The 3Blue1Brown series on linear algebra describes the linear
transformations above in a mathematical way. Using linear algebra, above computations

will become easier.

2.7.3 Collisions in the Center of Mass frame
There is a special frame of reference: the Center of Mass (CM) frame. Its origin is defined
with respect to the lab frame as

𝑅⃗ = ∑ 𝑚𝑖 ⃗𝑥𝑖
∑ 𝑚𝑖

(2.380)

We will introduce this formally in the next chapter.

As the mass is conserved during a collision we have

1. ∑ 𝑚𝑖 = 𝑐𝑜𝑛𝑠𝑡 and
2. as the momentum is conserved ∑ 𝑚𝑖

̇⃗𝑥𝑖 = 𝑐𝑜𝑛𝑠𝑡,

we see that the velocity of the CM does not change before and after collision

̇𝑅⃗𝑏𝑒𝑓𝑜𝑟𝑒 = ̇𝑅⃗𝑎𝑓𝑡𝑒𝑟 (2.381)

Instead of working in the lab frame we can use the CM frame. A sketch of the coordinates
and vectors is given in the figure below.
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Figure 2.254:  Center of mass.

For the relative coordinates ⃗𝑟𝑖 it holds that ∑ 𝑚𝑖 ⃗𝑟𝑖 = 0. Considering two particles: The
relative distance ⃗𝑟 = ⃗𝑟1 − ⃗𝑟2 = ⃗𝑥1 − ⃗𝑥2 is Galilei invariant.

Using this property we express the vectors ⃗𝑟1 and ⃗𝑟2 in terms of the relative distance
vector ⃗𝑟 for ⃗𝑟1 = 𝜇

𝑚1
⃗𝑟 and ⃗𝑟2 = − 𝜇

𝑚2
⃗𝑟 with 𝜇 the so-called reduced mass (see next

chapter). Therefore

𝑚1 ⃗𝑟1
𝑚2 ⃗𝑟2

=
=

𝜇 ̇⃗𝑟1
−𝜇 ̇⃗𝑟2

(2.382)

This means the momenta of both particles are always equal in magnitude and opposed in
direction in the CM frame. Only the orientation of the pair ̇⃗𝑟1,2 can change from before to
after the collision.

Figure 2.255:  Collision in center of mass frame.

2.7.4 Computational
For collisions with only a ‘few’ particles, it is doable to calculate the outcomes by hand.
That is, if there are no angles involved. It becomes more difficult if we want, for instance,
compute a box with 10⁴ particles. Such a simulation may provide key insights in
thermodynamic behavior.

Exercise 2.256: 

Add to the vpython code the center of mass and show that the velocity of the center
of mass does not change.
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Figure 2.257:  Computing multiple collisions by hand is quite challenging, but can be done
‘easily’ with the computer. Figure made by A. Greg, public domain

In computing collisions, we can make use of the general solution:

𝑣′1𝑥 = 𝑣1 cos(𝜃1 − 𝜙)(𝑚1 − 𝑚2) + 2𝑚2𝑣2 cos(𝜃2 − 𝜙)
𝑚1 + 𝑚2

cos(𝜙) + 𝑣1 sin(𝜃1 − 𝜙) cos(𝜙 + 𝑓𝑟𝑎𝑐(𝜋, 2))

𝑣′1𝑦 = 𝑣1 cos(𝜃1 − 𝜙)(𝑚1 − 𝑚2) + 2𝑚2𝑣2 cos(𝜃2 − 𝜙)
𝑚1 + 𝑚2

sin(𝜙) + 𝑣1 sin(𝜃1 − 𝜙) sin(𝜙 + 𝑓𝑟𝑎𝑐(𝜋, 2)),
(2.383)

as derived in Craver (2013).

Figure 2.258:  Figure made by Simon Steinmann, CC-SA

In an angle-free representation - using vectors rather than angles, the changed velocities
are computed using the centers 𝑥1 and 𝑥2 at the time of contact as:

𝒗′1 = 𝒗1 − 2𝑚2
𝑚1 + 𝑚2

 ⟨𝒗1 − 𝒗2, 𝒙1 − 𝒙2⟩
| 𝒙1 − 𝒙2 |2

 (𝒙1 − 𝒙2),

𝒗′2 = 𝒗2 − 2𝑚1
𝑚1 + 𝑚2

 ⟨𝒗2 − 𝒗1, 𝒙2 − 𝒙1⟩
| 𝒙2 − 𝒙1 |2

 (𝒙2 − 𝒙1)
(2.384)

In Python this would become:
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vA_new = vA - 2 * mB / (mA + mB) * np.dot(vA - vB, rA - rB) /
(1e-12+np.linalg.norm(rA - rB))**2 * (rA - rB)  
vB_new = vB - 2 * mA / (mA + mB) * np.dot(vB - vA, rB - rA) /
(1e-12+np.linalg.norm(rB - rA))**2 * (rB - rA)

Note that a vary small number is added (1𝑒 − 12) to prevent that the denominator does
not become 0.

2.7.5 Inelastic Collisions
For inelastic collisions only the momentum is conserved, but not the kinetic energy. The
kinetic energy after the collision is always less than before the collision. As the total
energy is conserved, some kinetic energy is converted to deformation or heat.

The amount of “inelasticity” or loss of energy can be quantified by the coefficient of
restitution 𝑒

𝑒 ≡ −
𝑣𝑟𝑒𝑙,𝑎𝑓𝑡𝑒𝑟

𝑣𝑟𝑒𝑙,𝑏𝑒𝑓𝑜𝑟𝑒
(2.385)

𝑒2 ≡
𝐸𝑘𝑖𝑛,𝑎𝑓𝑡𝑒𝑟

𝐸𝑘𝑖𝑛,𝑏𝑒𝑓𝑜𝑟𝑒
𝑖𝑛𝐶𝑀𝑓𝑟𝑎𝑚𝑒 (2.386)

For 𝑒 = 0 the collision is fully inelastic, for 𝑒 = 1 it is fully elastic.
Heat

In chapter Work & Engergy we have seen that energy is a conserved quantity. In
inelastic collisions the kinetic energy is not conserved, that is, with every collision the
temperature of both objects will increase. Remember from secondary school that heat
can be calculated using
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Exercise 2.259: Colliding Superballs 🌶

Watch this video on bouncing superballs. We discussed this problem in this chapter.

Do you agree with the explanation in the movie?

We seem to violate the conservation of kinetic energy: there is much more kinetic
energy after the collision than before! Can you figure out what is happening?

Tip

Look carefully at the bouncing of the blue ball with the earth. Is it really true that
the velocity after bouncing is 𝑣 and that the earth does not move? Probably not, as
this violates conservation of momentum!

2.7.6 Exercises, examples & solutions

2.7.6.1 Examples

2.7.6.1.1 Newton’s Cradle
Click on the link for an applet on Newton’s cradle (gives you also the possibility to ‘play’
with different numerical solvers, from (too) simple to advanced).

2.7.6.2 Exercises

2.7.6.3 Experiment

restitution coefficient

Exercise 2.261: 1D elastic collision 🌶

Consider two particles, 𝑚1 and 𝑚2, moving along the 𝑥-axis. The two particles will
elastically collide. We set mass 1 at a value of 1 (kg) and set 𝑚1 to 6 (kg).

Solve the collision by using conservation of momentum and kinetic energy and
compare your results with those of the widget.

You can change the value of 𝑚1 and of the velocities of both particles before the
collision. Change the values, predict what will happen, and check your prediction.
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Exercise 2.262: 2D elastic collision 🌶

Next, we consider an elastic collision between 𝑚1 and 𝑚2, but now in a 2-dimensional
setting.

In the widget below, the situation is animated. You can change the values of the initial
velocity and masses. Can you (qualitatively) predict the outcome of the collision for a
given set os parameters?

Exercise 2.263: Inelastic Collision 🌶

Particle 𝑚1 is moving over the 𝑥-axis with unit velocity. Simultaneously, particle 𝑚2
is moving over the 𝑦-axis also with unit velocity. Both particles will collide in the
origin. The collision is inelastic with restitution coefficient 𝑒.

The widget below shows the trajectories of the particles and gives the velocities after
the collision. Moreover, als the angle of the trajectories after the collision with the 𝑥-
axis is given.

Can you solve this problem for a few values of the restitution coefficient? The ‘easy
ones’ are for 𝑒 = 0.

Is the restitution coefficient of a bouncing tennis ball a constant or does it depend on
the velocity at bouncing?
You can ‘easily’ find out yourself. What you need is a tennis ball, and your mobile
with the phyphox app.Experiment: drop a tennis ball with zero initial velocity from
various height, . Use the acoustic chronometer to measure the time between multiple
bounces.Show that the relation between height and time between two bounces is
equal to Use your recordings to compute the height as function of number of bounces

Exercise 2.264: Completely inelastic collision

Consider a particle with mass 𝑀  being at rest in your frame of reference. A second
particle of mass 𝑚 comes in over the negative 𝑥-direction with velocity 𝑣. The
collision is completely inelastic.

Find the velocities after the collision.

Exercise 2.265: Intuitive collisions 🌶

Consider two particles (𝑚1,𝑚2) with velocities (𝑣1,𝑣2) before head-to-head collision.
What will the situation be after collision, tell so without calculations, if:

1. 𝑚1 = 𝑚2 and 𝑣1 = 𝑣; 𝑣2 = 0
2. 𝑚1 = 𝑚2 and 𝑣1 = 𝑣; 𝑣2 = −𝑣
3. 𝑚1 = 2𝑚2 and 𝑣1 = 𝑣; 𝑣2 = 0
4. 2𝑚1 = 𝑚2 and 𝑣1 = 𝑣; 𝑣2 = 0
5. 𝑚1 = 2𝑚2 and 𝑣1 = 𝑣; 𝑣2 = −𝑣
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Exercise 2.266: 🌶

A particle of mass 3𝑚 and velocity 2𝑣 will collide with a particle of mass 2𝑚 and
velocity −3𝑣. The problem is 1-dimensional.

• The collision is elastic. Find the velocities of the masses after the collision.
• The collision is completely inelastic. Find the velocities of the masses after the

collision.
• The restitution coefficient is: e=1/5. Find the velocities of the masses after the

collision.

Exercise 2.267: 🌶

A particle of mass 2𝑚 moves over the x-axis with velocity 𝑣. It will collide with a
particle of mass 𝑚 that moves over the y-axis also with velocity 𝑣. The collision is
completely inelastic.

Find the velocity of the particles after the collision and calculate the loss of kinetic
energy.

Exercise 2.268: 🌶

A tennis ball is dropped from a height of 1m (with zero initial velocity) on the tennis
court. The restitution coefficient is 12

√
2. After how many bounces does the tennis ball

no longer reach a height of 0.25m. Friction with the air can be ignored.

and compute the restitution coefficient .Plot  as a function  and you will have
answered the above question.

Exercise 2.269: 🌶 🌶

In Hollywood films often one of the persons is shot. That person (whether dead,
wounded or ‘just fine’ for the hero) is blown of its feet and may fly a meter or more
backwards.

The shooter, however, does not fly or fall backwards.

1. Show that if the victim moves backwards significantly, then the shooter shoot
do at least the same.

2. A bullet weighs several grams and may have a velocity of several hundred m/s.
Estimate what the backward velocity of a victim is. For comparison: when we
walk, our velocity is 1 to 2m/s. Conclusion?
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Solution 2.270: Solution to Exercise 5

Given: the collision is completely inelastic. That means 𝑒 = 0 or in words: after the
collision the two particles stick together and move as one particle. Thus, we have only
one unknown velocity after the collision.

The problem is 1-dimensional and we can solve it by requiring conservation of
momentum:

$$\begin{split}

\text{before ;;;;;;;} mv &+ M \cdot 0 = (m+M)U \text{ ;;;;;;; after} \ \Rightarrow U &=
\frac{m}{m+M} v

\end{split}$$

Solution 2.271: Solution to Exercise 7

• 3𝑚 has velocity −2𝑣 and 2𝑚 has velocity 3𝑣
• Both particles have zero velocity.
• 3𝑚 has velocity −2/5𝑣 and 2𝑚 has velocity 3/5𝑣.

Solution 2.272: Solution to Exercise 8

⃗𝑣𝑎𝑓𝑡𝑒𝑟 = 2
3
𝑣𝑥 + 1

3
𝑣𝑦 (2.387)

Δ𝐸𝑘𝑖𝑛 = −2
3
𝑚𝑣2 (2.388)

Solution 2.273: Solution to Exercise 9

After each bounce, the tennis ball reaches half of the height it had before the bounce.
Thus after two bounces, the ball reaches 25cm and with the third bounce only 12.5cm.
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Solution 2.274: Solution to Exercise 10

1. We can consider the shooting as a collision. Bullets don’t bounce back, they
penetrate a body. So the victim ‘gains’ maximum momentum if the bullet stays
in the body. Then according to conservation of momentum, we have for this
inelastic collision:

𝑚𝑏𝑣𝑏 + 𝑀𝑣 ⋅ 0 = (𝑚𝑏 + 𝑀𝑣)𝑈 (2.389)

Thus the velocity of the victim after being shot is:

𝑈 = 𝑚𝑏
𝑚𝑏 + 𝑀𝑣

𝑣𝑏 (2.390)

For the shooter a similar argument holds: before the shot, bullet & shooter have zero
momentum. After firing, the bullet has velocity 𝑣𝑏. Thus conservation of momentum
requires:

0 = 𝑚𝑏𝑣𝑏 + 𝑀𝑠𝑈𝑠 (2.391)

and we find for the velocity of the shooter:

𝑈𝑠 = −𝑚𝑏
𝑀𝑠

𝑣𝑏 (2.392)

Conclusion: as the mass of the bullet is negligible compared to that of a person both
shooter and victim have similar velocities. As their mass is comparable, it is clear:
from a physics point of view, if the victim is blown backward, than also the shooter is.

1. From the above we get, using 𝑚𝑏 ≈ 10 ⋅ 10−3kg, 𝑣𝑏 ≈ 500m/s and 𝑀𝑣 ≈ 70kg:

𝑈𝑣 = 𝑚𝑏
𝑚𝑏 + 𝑀𝑣

𝑣𝑏 ≈ 7𝑐𝑚/𝑠 (2.393)

That is much too little to ‘knock’ someone over. Hollywood is good at ‘dramatic
effects’, not so good at physics.

2.7.6.4 Answers
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2.8 Two Body Problem: Kepler revisited
Newton must have realized that his analysis of the Kepler laws was not 100% correct.
After all, the sun is not fixed in space and even though its mass is much larger than any of
the planets revolving it, it will have to move under the influence of the gravitational force
by the planets. Take for example, the sun and earth as our system. By the account of
Newton’s third law, the Earth exerts also a force on the Sun. Therefore, the Sun has to
move as well; thus, we must revisit the Earth-Sun analysis and incorporate that the Sun
isn’t fixed in space.

Figure 2.275:  Two-particle system, with an action/reaction pair of forces.

The two-body problem is stated hereby as:

Particle 𝑚1 feels an external force ⃗𝐹1 and an interaction force from particle two, ⃗𝐹21.
Similarly for particle 𝑚2: it feels an external force ⃗𝐹2 and an interaction force from
particle one, ⃗𝐹12.

Consider the situation in the figure:

𝑚1
̈ ⃗𝑥1 = ⃗𝐹1 + ⃗𝐹21 (2.394)

𝑚2
̈ ⃗𝑥2 = ⃗𝐹2 + ⃗𝐹12 (2.395)

Add the two equations and use N3: ⃗𝐹12 = − ⃗𝐹21:

𝑚1
̈ ⃗𝑥1 + 𝑚2

̈ ⃗𝑥2 = ⃗𝐹1 + ⃗𝐹2 ⇔ (2.396)

̇⃗𝑃 = ⃗𝐹1 + ⃗𝐹2 (2.397)

with ⃗𝑃 ≡ ⃗𝑝1 + ⃗𝑝2. In words, it is as if a particle with (total) momentum ⃗𝑃  responds to the
external forces but does not react to internal forces (the mutual interaction).

2.8.1 Center of Mass
It is now logical to assign the total mass 𝑀 = 𝑚1 + 𝑚2 to this fictitious particle. It has
momentum ⃗𝑝1 + ⃗𝑝2 which we can also couple to its mass 𝑀  and assign a velocity ⃗𝑉  to it
such that ⃗𝑃 = 𝑀 ⃗𝑉 . Furthermore, if this fictitious mass has velocity ⃗𝑉 , we can also assign
a position to it. After all, ⃗𝑉 = 𝑑𝑅⃗

𝑑𝑡 , which gives us the recipe for the position 𝑅⃗.

Its velocity ⃗𝑉  and position 𝑅⃗ then follow as:

⃗𝑉 = 𝑚1 ⃗𝑣1 + 𝑚2 ⃗𝑣2
𝑚1 + 𝑚2

=
𝑚1

𝑑𝑥⃗1
𝑑𝑡 + 𝑚2

𝑑𝑥⃗2
𝑑𝑡

𝑚1 + 𝑚2

⇒ 𝑅⃗ = 𝑚1 ⃗𝑥1 + 𝑚2 ⃗𝑥2
𝑚1 + 𝑚2

+ ⃗𝐶

(2.398)
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In the last equation, we have an integration constant in the form of a vector, ⃗𝐶 . We are
free to choose it as we want: its precise value does not affect the velocity ⃗𝑉  nor the
momentum ⃗𝑃  of our fictitious particle.

It makes sense, to choose: ⃗𝐶 = 0 and thus define as position of the particle:

𝑅⃗ = 𝑚1 ⃗𝑥1 + 𝑚2 ⃗𝑥2
𝑚1 + 𝑚2

(2.399)

Why?

We have a few arguments:

1. if the particles are actually each half of a real particle, we obviously require that 𝑅⃗
is the position of the real particle.

2. If the particles are separate by a small distance, we would like to have the fictitious
particle somewhere in between the two. Moreover, if the two particles are identical,
it makes sense to have the fictitious particle right in between them: the system is
symmetric.

Where, in general is the position 𝑅⃗? That can be easily seen from the figure below.

Figure 2.276:  Center of Mass and relative coordinates.

We rewrite the definition of 𝑅⃗:

𝑅⃗ ≡ 𝑚1 ⃗𝑥1 + 𝑚2 ⃗𝑥2
𝑚1 + 𝑚2

= ⃗𝑥1 + 𝑚2
𝑚1 + 𝑚2

( ⃗𝑥2 − ⃗𝑥1) (2.400)

Thus, the last part of the above equation tells us: first go to 𝑚1 and then, ‘walk’ a fraction
𝑚2

𝑚1+𝑚2
 of the line connecting 𝑚1 and 𝑚2. If you have done that, you are at position 𝑅⃗.

Note: if 𝑚1 = 𝑚2 this recipe indeed brings us right between the two particles.
Further note: the position of 𝑀  is always on the line from 𝑚1 to 𝑚2. If 𝑚1 is much larger
than 𝑚2, it will be located close to 𝑚1 and vice versa.

We call this position the center of mass, or CM for short. Reason: if we look at the
response of our two particle system to the forces, it is as if there is a particle 𝑀  at
position 𝑅⃗ that has all the momentum of the system.

It turns out to be convenient to define relative coordinates with respect to the center of
mass position (see also the figure above):

⃗𝑟1 ≡ ⃗𝑥1 − 𝑅⃗𝑎𝑛𝑑 ⃗𝑟2 ≡ ⃗𝑥2 − 𝑅⃗ (2.401)

Via the external forces, we can ‘follow’ the motion of the center of mass position, i.e. 𝑅⃗.
From the CM as new origin, we can find the position of the two particles.

A helpful rule is found from:
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𝑚1 ⃗𝑟1 + 𝑚2 ⃗𝑟2 =
= 𝑚1( ⃗𝑥1 − 𝑅⃗) + 𝑚2( ⃗𝑥2 − 𝑅⃗)

= 𝑚1 ⃗𝑥1 + 𝑚2 ⃗𝑥2 − (𝑚1 + 𝑚2)𝑅⃗ = 0
(2.402)

⇒ 𝑚1 ⃗𝑟1 + 𝑚2 ⃗𝑟2 = 0 (2.403)

This has an important consequence: if we know ⃗𝑟1, we know ⃗𝑟2, and vice versa. Note: the
directions of ⃗𝑟1 and ⃗𝑟2 are always opposed and the center of mass 𝑅⃗ is located
somewhere on the connecting line between 𝑚1 and 𝑚2.

Note 2: in the case of no external forces ⃗𝐹1 = ⃗𝐹2 = 0 and only internal forces ⃗𝐹12 ≠ 0 the
CM moves according to N1 with constant velocity ( ̇⃗𝑃 = 0).

2.8.2 Energy
In terms of relative coordinates, we can write the kinetic energy as a part associated with
the CM and a part that describes the kinetic energy with respect to the CM, i.e., ‘an
internal kinetic energy.’

𝐸𝑘𝑖𝑛 ≡

=

=

1
2𝑚1𝑣2

1 + 1
2𝑚2𝑣2

2

1
2𝑚1( ̇⃗𝑟1 + ̇𝑅⃗)

2
+ 1

2𝑚2( ̇⃗𝑟2 + ̇𝑅⃗)
2

1
2𝑀 ̇𝑅⃗2 + 1

2𝑚1
̇⃗𝑟2
1 + 1

2𝑚2
̇⃗𝑟2
2

(2.404)

For the potential energy, we may write:

𝑉 = ∑ 𝑉𝑖 + 1
2

∑
𝑖≠𝑗

(𝑉𝑖𝑗 + 𝑉𝑗𝑖) (2.405)

With 𝑉𝑖 the potential related to the external force on particle 𝑖 and 𝑉𝑖𝑗 the potential
related to the mutual interaction force from particle 𝑖 exerted on particle 𝑗 (assuming that
all forces are conservative).

2.8.3 Angular Momentum
The total angular momentum is, like the total momentum, defined as the sum of the
angular momentum of the two particles:

𝐿⃗ = ⃗𝑙1 + ⃗𝑙2 = ⃗𝑥1 × ⃗𝑝1 + ⃗𝑥2 × ⃗𝑝2 (2.406)

We can write this in the new coordinates:

𝐿⃗ = 𝑅⃗ × ⃗𝑃 + ⃗𝑟1 × ⃗𝑝1 + ⃗𝑟2 × ⃗𝑝2 = 𝐿⃗𝑐𝑚 + 𝐿⃗′ (2.407)

We find: that the total angular momentum can be seen as the contribution of the CM and
the sum of the angular momentum of the individual particles as seen from the CM.

2.8.4 Reduced Mass
Suppose that there are no external forces. Then the equation of motion for both particles
reads as:

𝑚1
̈⃗𝑥1

𝑚2
̈⃗𝑥2

=
=

⃗𝐹12
⃗𝐹21 = − ⃗𝐹12

(2.408)

If we divide each equation by the corresponding mass and subtract one from the other we
get:
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𝑑2

𝑑𝑡2
( ⃗𝑥1 − ⃗𝑥2) = ( 1

𝑚1
+ 1

𝑚2
) ⃗𝐹12 (2.409)

Note that the interaction force ⃗𝐹12 is a function of the relative position of the particles,
i.e., ⃗𝑥1 − ⃗𝑥2 = ⃗𝑟1 − ⃗𝑟2.

Introduce ⃗𝑟12 ≡ ⃗𝑟1 − ⃗𝑟2 = ⃗𝑥1 − ⃗𝑥2, then we obtain:

𝑑2

𝑑𝑡2 ⃗𝑟12 = ( 1
𝑚1

+ 1
𝑚2

) ⃗𝐹12( ⃗𝑟12) (2.410)

As a final step, we introduce the reduced mass 𝜇:

1
𝜇

≡ 1
𝑚1

+ 1
𝑚2

⇔ 𝜇 = 𝑚1𝑚2
𝑚1 + 𝑚2

(2.411)

And we can reduced the two-body problem to a single-body problem, by writing down
the equation of motion for an imaginary particle with reduced mass.

𝜇𝑑2 ⃗𝑟12
𝑑𝑡2

= ⃗𝐹12 (2.412)

If 𝑚1 ≫ 𝑚2 we have 𝜇 → 𝑚2. This is not surprising: when 𝑚1 is much larger than 𝑚2, it
will look like 𝑚1 is not changing its velocity at all. Or seen from the CM: is appears to be
not moving. In this case, we can ignore particle 1 and replace it by a force coming out of a
fixed position.

2.8.4.1 Back to the Two-Body Problem
Once we solved the problem for the reduced mass, it is straightforward to go back to the
two particles. It holds that:

𝑚1 ⃗𝑟1 + 𝑚2 ⃗𝑟2 = 0 (2.413)

⃗𝑟2 = −𝑚1
𝑚2

⃗𝑟1 ⃗𝑟2 = ⃗𝑟1 − ⃗𝑟12 (2.414)

⃗𝑟1

⃗𝑟2

=
=

𝑚1
𝑚1+𝑚2

⃗𝑟12

− 𝑚1
𝑚1+𝑚2

⃗𝑟12
(2.415)

Thus, if we have solved the motion of the reduced particle, then we can quickly find the
motion of the two individual particles (seen from the CM frame).

2.8.5 Kepler Revisited

Figure 2.277:  Kepler revisited.

Now that we have seen how to deal with the two-body problem, we can return to the
motion of the Earth around the Sun. This is obviously not a two-body problem, but a
many-body problem with many planets.
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However, we can approximate it to a two-body problem: we ignore all other planets and
leave only the Sun and Earth. Hence, there are no external forces. Consequently, the CM
of the Earth-Sun system moves at a constant velocity. And we can take the CM as our
origin.

We have to solve the reduced mass problem to find the motion of both the Earth and the
Sun:

𝜇𝑑2 ⃗𝑟12
𝑑𝑡2

= −𝐺𝑚𝑒𝑚𝑠
𝑟2
12

𝑟̂12 (2.416)

Note: this equation is almost identical to the original Kepler problem. All that happened is
that 𝑚𝑒 on the left hand side got replaced by 𝜇.

Everything else remains the same: the force is still central and conservative, etc.

2.8.5.1 Where is the CM located?

Figure 2.278:  Position of CM in the sun-earth system.

We can easily find the center of mass of the Earth-Sun system. Chose the origin on the
line through the Sun and the Earth (see fig.)

𝑅 = 𝑚𝑠𝑥𝑠 + 𝑚𝑒𝑥𝑒
𝑚𝑠 + 𝑚𝑒

= 𝑥𝑠 + 𝑚𝑒
𝑚𝑠 + 𝑚𝑒

(𝑥𝑒 − 𝑥𝑠) ≈ 𝑥𝑠 + 450𝑘𝑚 (2.417)

In other words: the Sun and Earth rotate in an ellipsoidal trajectory around the center of
mass that is 450 km out of the center of the Sun. Compare that to the radius of the Sun
itself: 𝑅𝑠 = 7 ⋅ 105 km. No wonder Kepler didn’t notice. The common CM and rotation
point is called Barycenter in astronomy.

2.8.5.2 Exoplanets
However, in modern times, this slight motion of stars is a way of trying to find orbiting
planets around distant stars. Due to this small ellipsoidal trajectory, sometimes a star
moves away from us, and sometimes it comes towards us. This moving away and towards
us changes the apparent color of the light emission of molecules or atoms by the Doppler
effect. This is a periodic motion, which lasts a ‘year’ of that solar system. Astronomers
started looking out for periodic changes in the apparent color of the light of stars. One
can also look for periodic changes in the brightness of a star (which is much, much harder
than looking at spectral shifts of the light). If a planet is directly between the star and us,
the intensity of the starlight decreases a bit. And they found one, and another one, and
more and hundreds… Currently, more than 5,000 exoplanets have been found.
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Figure 2.279:  Changing color of star light due to a period motion induced by a planet
orbiting the star (animation from NASA).

Figure 2.280:  Changing intensity of star light due to a period passage of a planet orbiting
the star (animation from NASA).

2.8.6 Many-Body System
We have seen that we could reduce the two-body problem of sun-earth to a single body
question via the concept of reduced mass. But that this strategy does not work for 3, 4, 5,
… bodies.

2.8.6.1 Linear Momentum
We can, however, find some basic features of 𝑁 -body problems. In the figure, a collection
of 𝑁  interacting particles is drawn.

Figure 2.281:  Many particle system.

Each particle has mass 𝑚𝑖 and is at position 𝑥𝑖(𝑡). For each particle, we can set up N2:
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𝑚𝑖
̈ ⃗𝑥𝑖 = ⃗𝐹𝑖,𝑒𝑥𝑡 + ∑

𝑖≠𝑗

⃗𝐹𝑗𝑖. (2.418)

Summing over all particles and using that all mutual interaction forces form “action = -
reaction pairs”, we get:

∑
𝑖

𝑚𝑖
̈ ⃗𝑥𝑖 = ∑

𝑖

⃗𝐹𝑖,𝑒𝑥𝑡 ⇔ ∑
𝑖

̇⃗𝑝𝑖 = ∑
𝑖

⃗𝐹𝑖,𝑒𝑥𝑡 (2.419)

The second part can be written as:

𝑑 ⃗𝑃
𝑑𝑡

= ∑
𝑖

⃗𝐹𝑖,𝑒𝑥𝑡𝑤𝑖𝑡ℎ ⃗𝑃 ≡ ∑
𝑖

⃗𝑝𝑖 (2.420)

In other words: the total momentum changes due to external forces. If there are no
external forces, then the total momentum is conserved. This happens quite a lot actually,
if you consider e.g. collisions or scattering.

2.8.6.2 Center of Mass
Analogous to the two-particle case, we see from the total momentum that we can pretend
that there is a particle of total mass 𝑀 = ∑𝑖 𝑚𝑖 that has momentum ⃗𝑃 , i.e., it moves at
velocity ⃗𝑉 ≡ 𝑃⃗

𝑀  and is located at position:

⃗𝑉 = 𝑑𝑅⃗
𝑑𝑡

=
∑ 𝑚𝑖

𝑑𝑥⃗𝑖
𝑑𝑡

∑ 𝑚𝑖
⇒ 𝑅⃗ = ∑ 𝑚𝑖 ⃗𝑥𝑖

∑ 𝑚𝑖
(2.421)

Continuing with the analogy, we define relative coordinates:

⃗𝑟𝑖 ≡ ⃗𝑥𝑖 − 𝑅⃗ (2.422)

and have a similar rule constraining the relative positions:

∑ 𝑚𝑖 ⃗𝑟𝑖 = 0 (2.423)

2.8.6.3 Energy
In terms of relative coordinates, we can write the kinetic energy as a part associated with
the center of mass and a part that describes the kinetic energy with respect to the center
of mass, i.e., ‘an internal kinetic energy’.

𝐸𝑘𝑖𝑛 ≡ ∑ 1
2
𝑚𝑖𝑣2

𝑖

= 1
2
𝑀 ̇𝑅⃗2 + ∑ 1

2
𝑚𝑖

̇⃗𝑟2
𝑖

= 𝐸𝑘𝑖𝑛,𝑐𝑚 + 𝐸′𝑘𝑖𝑛

(2.424)

For the potential energy, we may write:

𝑉 = ∑ 𝑉𝑖 + 1
2

∑
𝑖≠𝑗

(𝑉𝑖𝑗 + 𝑉𝑗𝑖) (2.425)

with 𝑉𝑖 the potential related to the external force on particle 𝑖 and 𝑉𝑖𝑗 the potential related
to the mutual interaction force from particle 𝑖 exerted on particle 𝑗 (assuming that all
forces are conservative).

2.8.6.4 Angular Momentum
The total angular momentum is, like the total momentum, defined as the sum of the
angular momentum of all particles:
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𝐿⃗ = ∑ ⃗𝑙𝑖 = ∑ ⃗𝑥𝑖 × ⃗𝑝𝑖 (2.426)

We can write this in the new coordinates:

𝐿⃗ = 𝑅⃗ × ⃗𝑃 + ∑ ⃗𝑟𝑖 × ⃗𝑝𝑖 = 𝐿⃗𝑐𝑚 + 𝐿⃗′ (2.427)

Again, we find that the total angular momentum can be seen as the contribution of the
center of mass and the sum of the angular momentum of all individual particles as seen
from the center of mass.

The N-body problem is, of course, even more complex than the three-body problem. If we
can solve it, it will be under very specific conditions only. However, a numerical approach
can be done with great success. Moreover, current computers are so powerful that the
system can contain hundred, thousands of particles up to billions depending on the type
or particle-particle interaction.

All kind of computational techniques have been developed and various averaging
techniques are employed in statistical techniques are introduced from the start. the reason
is often, that a particular ‘realisation’ of all positions and velocities of all particles is
needed nor sought for. A system is at its macro level described by averaged properties,
the exact location of the individual atoms is not needed. You will find applications in
cosmology all the way to molecular dynamics, trying to simulate the behavior of proteins
or pharmaceuticals.
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Exercise 2.282: 🌶

In the table below, the mass and distance from the sun of the planets in our solar
system are given (in terms of the earth mass and distance from the earth to the sun).
Compute for each planet-sun pair the distance from the center of mass to the center of
the sun. Given: distance CM to center of sun for the earth-sun system is 450km.

planet relative mass relative distance to the sun
Mercurius 0.06 0.39
Venus 0.82 0.72
Earth 1.00 1.00
Mars 0.11 1.52
Jupiter 317.8 5.20
Saturnus 095.2 9.54
Uranus 14.6 19.22
Neptunus 17.2 30.06

Exercise 2.283: 🌶

Two particles 𝑚1 = 𝑚 and 𝑚2 = 2𝑚 are traveling both along the 𝑥-axis. At 𝑡 = 0 the
particles have both velocity 𝑣0 > 0. Their positions at 𝑡 = 0 are 𝑥1(0) = 𝑥10 and
𝑥2(0) = 𝑥20 with 𝑥10 < 𝑥20. They repel each other with a force 𝐹𝑟 = 𝑘

(𝑥2−𝑥1)2 .
Moreover, a constant external force 𝐹𝑒 is acting on them. The problem is 1-
dimensional.

• Find the velocity of the center of mass for 𝑡 > 0
• Find the position of the center of mass for 𝑡 > 0.

Exercise 2.284: 🌶

Two particles 𝑚1 = 3kg and 𝑚2 = 2kg are connected via a massless rod of length
𝐿 = 50cm.

• Find the position of the center of mass of the system, measured from 𝑚1
• Calculate the reduced mass of the two-particle system.
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Exercise 2.285: Bumper car collision 🌶

Two bumper cars are approaching each other in a straight line. The two cars will
collide head-on. The mass of car 1 (including the driver) is 200kg, that of car 2 300kg.
Car 1 has a velocity of 8m/s; 𝑐𝑎𝑟2𝑜𝑓−4 \mathrm{m/s}$.

• What is the velocity of the center of mass of the system?
• What is the reduced mass of the system?
• Transform the velocities of both carts to the center-of-mass frame.

Exercise 2.286: 🌶

Two carts on a frictionless track move toward each other:

Cart 1: mass 𝑚1 = 2kg, velocity 𝑣1 = 4m/s
Cart 2: mass 𝑚2 = 3kg, velocity 𝑣2 = −2m/s

• What is the total kinetic energy in the lab frame?
• What is the velocity of the center of mass?
• What is the total kinetic energy in the center-of-mass frame?
• Verify that the CM frame kinetic energy equals the kinetic energy due to relative

motion using the reduced mass.

Solution 2.287: Solution to Exercise 1

planet relative mass relative distance to the sun distance CM to center of
sun (km)

Mercurius 0.06 0.39 10
Venus 0.82 0.72 265
Earth 1.00 1.00 450
Mars 0.11 1.52 75
Jupiter 317.8 5.20 $743 \cdot 10^3$
Saturnus 095.2 9.54 $409 \cdot 10^3$
Uranus 14.6 19.22 $126 \cdot 10^3$
Neptunus 17.2 30.06 $234 \cdot 10^3$
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Solution 2.288: Solution to Exercise 2

We set up the equation of motion for the particles:

𝑚1 : 𝑚1 ̇𝑣1 = 𝐹𝑒 − 𝐹𝑟

𝑚1 : 𝑚2 ̇𝑣2 = 𝐹𝑒 + 𝐹𝑟
(2.428)

Add these two equations:

𝑀 ̇𝑉 = 𝑚1 ̇𝑣1 + 𝑚2 ̇𝑣2 = 2𝐹𝑒 → ̇𝑉 = 2𝐹𝑒
𝑚1 + 𝑚2

= 2𝐹𝑒
3𝑚

(2.429)

As expected, we see that the repelling mutual force has no effect on the center of
mass. We can solve this equation, using the initial condition the 𝑀𝑉 (0) = 𝑚1𝑣1(0) +
𝑚2𝑣2(0) → 𝑉 (0) = 𝑚𝑣0+2𝑚𝑣0

𝑚+2𝑚 = 𝑣0

𝑉 (𝑡) = 2𝐹𝑒
3𝑚

𝑡 + 𝐶1 = 2𝐹𝑒
3𝑚

𝑡 + 𝑣0 (2.430)

As the next step we calculate 𝑅(𝑡):

𝑅̇ ≡ 𝑉 = 𝑣0 + 2𝐹𝑒
3𝑚

𝑡 → 𝑅(𝑡) = 𝑣0𝑡 + 𝐹𝑒
3𝑚

𝑡2 + 𝐶2 (2.431)

The initial condition is: 𝑅(0) = 𝑚1𝑥1(0)+𝑚2𝑥2(0)
𝑚1+𝑚2

= 1
3𝑥10 + 2

3𝑥20.

This gives

𝑅(𝑡) = 1
3
𝑥10 + 2

3
𝑥20 + 𝑣0𝑡 + 𝐹𝑒

3𝑚
𝑡2 (2.432)

Solution 2.289: Solution to Exercise 3

The center of mass of two point masses is on the line connecting 𝑚1 and 𝑚2. We
denote this line as the 𝑥-axis, with 𝑚1 as the origin.

• The center of mass is than given by (with 𝑚1 = 3kg, 𝑚2 = 2kg, 𝑥1=0 and 𝑥2 =
𝑥1 + 𝐿 = 0.5m):

𝑥𝑐𝑚 = 𝑚1𝑥1 + 𝑚2𝑥2
𝑚1 + 𝑚2

= 0.2𝑚 (2.433)

• The reduced mass is given by:

𝜇 ≡ 𝑚1𝑚2
𝑚1 + 𝑚2

= 6
5
𝑘𝑔 (2.434)
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Solution 2.290: Solution to Exercise 4

This is a 1-dimensional problem.

• The velocity of the center of mass is:

𝑉𝑐𝑚 = 𝑚1𝑣1 + 𝑚2𝑣2
𝑚1 + 𝑚2

= 4
5
𝑚/𝑠 (2.435)

• The reduced mass is given by:

𝜇 ≡ 𝑚1𝑚2
𝑚1 + 𝑚2

= 120𝑘𝑔 (2.436)

• In the CM frame the velocities of the cars are:

𝑣1′ = 𝑣1 − 𝑉𝑐𝑚 = 7.2𝑚/𝑠
𝑣2′ = 𝑣2 − 𝑉𝑐𝑚 = −4.8𝑚/𝑠

(2.437)
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Solution 2.291: Solution to Exercise 5

Cart 1: mass 𝑚1 = 2kg, velocity 𝑣1 = 4m/s
Cart 2: mass 𝑚2 = 3kg, velocity 𝑣2 = −2m/s

• The total kinetic energy in the lab frame is

𝐸𝑘𝑖𝑛 = 1
2
𝑚1𝑣2

1 + 1
2
𝑚2𝑣2

2 = 22𝐽 (2.438)

• The velocity of the center of mass is

𝑉𝑐𝑚 ≡ 𝑚1𝑣1 + 𝑚2𝑣2
𝑚1 + 𝑚2

= 0.4𝑚/𝑠 (2.439)

• The total kinetic energy in the center-of-mass frame is

𝐸𝑘𝑖𝑛,𝐶𝑀 = 1
2
𝑚1𝑣1′2 + 1

2
𝑚2𝑣2′2 (2.440)

with

𝑣1′ = 𝑣1 − 𝑉𝑐𝑚 = 3.6𝑚/𝑠
𝑣2′ = 𝑣2 − 𝑉𝑐𝑚 = −2.4𝑚/𝑠

(2.441)

Thus

𝐸𝑘𝑖𝑛,𝐶𝑀 = 21.6𝐽 (2.442)

• The reduced mass is

𝜇 ≡ 𝑚1𝑚2
𝑚1 + 𝑚2

= 1.2𝑘𝑔 (2.443)

The relative velocity is

𝑣𝑟𝑒𝑙 ≡ 𝑣1 − 𝑣2 = 6𝑚/𝑠 (2.444)

The kinetic energy associated with the motion of the reduced mass (i.e. the kinetic
energy in the CM frame) is:

𝐸𝑘𝑖𝑛,𝑟𝑒𝑙 ≡ 1
2
𝜇𝑣2

𝑟𝑒𝑙 = 21.6𝐽 (2.445)

as we expected.
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Exercise 2.292: 🌶

Thee masses are forming an equilateral triangle with sides of 2m. Mass 1 (10kg) is
positioned at (𝑥1, 𝑦1) = (−1𝑚, 0)). Mass 2 (6kg) is at (𝑥2, 𝑦2) = (1𝑚, 0), while mass
3 (2kg) is at (𝑥3, 𝑦3) = (0,

√
3).

• Calculate the position of the center of mass.

Exercise 2.293: 🌶 🌶

Four particles are moving over the line 𝑦 = 𝑦0. The particles have mass 𝑚1 =
4𝑚, 𝑚2 = 3𝑚, 𝑚3 = 2𝑚, 𝑚4 = 𝑚 and velocity 𝑣1 = 𝑣, 𝑣2 = 2𝑣, 𝑣3 = 3𝑣, 𝑣4 = 4𝑣.
These velocities are constant and parallel to the 𝑥-axis. At 𝑡 = 0 all particles are at
location (𝑥, 𝑦) = (0, 𝑦0).

Figure 2.294:  Four particles moving on a line.

• Calculate the velocity of the center of mass.
• Calculate the position of the center of mass as a function of time.
• Calculate the total angular momentum.
• Calculate the angular momentum associated with the center of mass and show

that in this case this is equal to the total angular momentum.
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Exercise 2.295: 🌶 🌶

Eight point particles (each mass 𝑚) are attached to a massless wheel of radius 𝑅.

Figure 2.296:  Eight particles on a wheel.

The wheel is moving with a velocity 𝑉  while it is rotating at the same time with
angular velocity 𝜔.

Calculate the total kinetic energy of this system. Hint: use the CM frame and connect
that to the lab frame.

Exercise 2.297: 🌶 🌶 🌶

A container of volume 𝑉𝑐 and mass 𝑀𝑐 contains Nitrogen gas. The number of
molecules, 𝑁 , is on the order of 10²³. The container is dropped from a height 𝐻 .
Gravity is acting on the molecules. Friction on the container is ignored.

Show that the container falls with the acceleration of gravity 𝑔.
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Exercise 2.298: 🌶 🌶 🌶

We consider a 2-dimensional problem: 𝑁 = 30 particles move in the 𝑥𝑦-plane. Each
particle has a fixed velocity (𝑣𝑖

𝑥, 𝑣𝑖
𝑦) with 𝑖 = 1..𝑁 . The particle velocities have a

magnitude ranging from 1 to 5 (m/s) randomly chosen for each particle. The direction
of each velocity vector is also randomly chosen from 0 to 2𝜋. The particles move
inside a box with sides 𝐿=50m. Particles do not collide with each other, but they do
collide with the walls of the container. The result of a collision is that the particle
motion gets reflected.

• Write a python program that generates N particles starting all at (𝑥, 𝑦) = (0, 0).
• Compute the position of all particles after 1 second and compute the velocity and

position of the center of mass.
• Write a loop that updates the particle velocities after a time step 𝑑𝑡 and

recompute the velocity and position of the center of mass.
• Run the loop 𝑀  times and plot the position of the center of mass in the 𝑥𝑦-plane

as a function of time.
• What happens if you change the number of particles from 30 to 3 or to 300?

Solution 2.299: Solution to Exercise 6

The position of the center of mass is

𝑅⃗ ≡
∑𝑖 𝑚𝑖 ⃗𝑥𝑖

∑𝑖 𝑚𝑖
= (𝑚1𝑥1)𝑥 + (𝑚2𝑥2)𝑥 + (𝑚3𝑦3)𝑦

𝑚1 + 𝑚2 + 𝑚3
= −2

9
[𝑚]𝑥 + 1

9
[𝑚]𝑦(2.446)

where [𝑚] indicates that the unit is meters.

Note: 𝑥 and 𝑦 do not carry units!
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2.8.7 Examples, exercises & solutions

2.8.7.0.1 Exercises

2.8.7.0.2 Answers

2.8.7.0.3 Exercises

2.8.7.0.4 Answers
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Solution 2.300: Solution to Exercise 7

Figure 2.301: 

2.8.7.1 width: 350px align: center
Four particles moving on a line.

• Velocity of the center of mass:

⃗𝑉 =
∑𝑖 𝑚𝑖 ⃗𝑣𝑖

∑𝑖 𝑚𝑖
(2.447)

Since the velocities are all parallel to the 𝑥-axis, we can drop the vector notation.
Substituting the data for mass and velocity, gives:

𝑉𝑥 = 4𝑚𝑣 + 6𝑚𝑣 + 6𝑚𝑣 + 4𝑚𝑣
4𝑚 + 3𝑚 + 2𝑚 + 𝑚

= 2𝑣 (2.448)

• Position of the center of mass:

⃗𝑉 = 𝑑𝑅⃗
𝑑𝑡

→ 𝑅⃗(𝑡) = 2𝑣𝑡𝑥 + ⃗𝑐 (2.449)

At 𝑡 = 0 all particles at location (0, 𝑦0). Thus, we find

𝑅⃗(𝑡) = 2𝑣𝑡𝑥 + 𝑦0𝑦 (2.450)

• Total angular momentum:

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐿𝑡𝑜𝑡 = ∑
𝑖

⃗𝑙𝑖

= 𝑦0 ⋅ 4𝑚𝑣𝑧 + 𝑦0 ⋅ 3𝑚 ⋅ 2𝑣𝑧 + 𝑦0 ⋅ 2𝑚 ⋅ 3𝑣𝑧 + 𝑦0 ⋅ 𝑚 ⋅ 4𝑣𝑧
= 20𝑚𝑣𝑦0𝑧

(2.451)

• Angular momentum associated with the center of mass:

𝐿⃗ = 𝑅⃗ × 𝑀 ⃗𝑉 = 𝑦010𝑚 ⋅ 2𝑣𝑧 = 20𝑚𝑣𝑦0𝑧 (2.452)

which is indeed the same as the total angular momentum. This is in this case to be
expected as the angular momentum seen from the CM frame is 𝐿⃗′ = 0 as in the CM
frame the position vector and momentum vector are parallel for all four particles.
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Solution 2.302: Solution to Exercise 8

We split the kinetic energy in the kinetic energy associated with the center of mass
and the kinetic energy as seen from the CM frame:

𝐸𝑘𝑖𝑛 = 1
2
𝑀𝑉 2 + 𝐸′𝑘𝑖𝑛 (2.453)

Due to symmetry, the center of mass velocity is 𝑉 .

In the CM frame, all particles rotate with 𝜔 and thus have a velocity of magnitude
𝑣′ = 𝜔𝑅. As all particles have the same mass, we have 𝑀 = 8𝑚. The kinetic energy
is:

𝐸𝑘𝑖𝑛 = 1
2
8𝑉 2 + 8 ⋅ 1

2
𝑚𝜔2𝑅2 = 4𝑚𝑉 2 + 4𝑚𝑅2𝜔2 (2.454)

Solution 2.303: Solution to Exercise 9

All nitrogen molecules feel gravity and have interaction with each other and with the
wall of the container. If we write down the equation of motion for all molecules
(labelled 𝑖) and the container we get:

𝑀𝑐
̈⃗𝑥𝑐 = 𝑀𝑐 ⃗𝑔 + ∑

𝑖

⃗𝐹𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖 𝑜𝑛 𝑣𝑒𝑠𝑠𝑒𝑙 𝑤𝑎𝑙𝑙

𝑚𝑖
̈⃗𝑥𝑖 = −𝑚𝑖 ⃗𝑔 + ⃗𝐹𝑣𝑒𝑠𝑠𝑒𝑙 𝑤𝑎𝑙𝑙 𝑜𝑛 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖 + ∑

𝑗≠𝑖

⃗𝐹𝑗𝑖
(2.455)

with ⃗𝐹𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖 𝑜𝑛 𝑣𝑒𝑠𝑠𝑒𝑙 𝑤𝑎𝑙𝑙 the force of molecule 𝑖 on the vessel wall and ⃗𝐹𝑗𝑖 the
force from molecule 𝑗 on molecule 𝑖. All these forces are internal forces and when
summing over all particles (including the vessel) will cancel each other as they all
obey N3.

Thus is we add the equations, we find:

𝑑
𝑑𝑡

(𝑀𝑐
̇⃗𝑥𝑐 + ∑

𝑖
𝑚𝑖

̇⃗𝑥𝑖) = (𝑀𝑐 + ∑ 𝑚𝑖) ⃗𝑔 (2.456)

On the left side, we recognize the total momentum which we can write in terms of the
center of mass: 𝑀𝑐

̇⃗𝑥𝑐 + ∑𝑖 𝑚𝑖
̇⃗𝑥𝑖 = 𝑀 ⃗𝑉 .

And on the right hand side we see the total mass 𝑀 = 𝑀𝑐 + ∑ 𝑚𝑖.

Thus, we conclude:

𝑀 ̇⃗𝑉 = 𝑀 ⃗𝑔 → ̇𝑉 = −𝑔 (2.457)

The entire container drops with acceleration −𝑔.
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Solution 2.304: Solution to Exercise 10

Figure 2.305: 

2.8.7.2 :label: fig:Dustparticles_animation.gif width: 350px align: center
30 particles: left motion of the center of mass, right motion of all particles.
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