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1. Introduction
Updated: 18 jan 2026 This book provides an introduction for freshman students into the
world of classical mechanics and special relativity theory. Much of physics is build on the
basic ideas from classical mechanics. Hence an early introduction to the topic can be
beneficial for new students. However, at the start of studying physics, lots of the required
math is not available yet. That means that all kind of concepts that are very useful cannot be
invoked in the lectures and teaching. That does not have to be a disadvantage. It can also be
used to help the students by introducing some math and coupling it directly to the physics,
making more clear why mathematics should be studied and what its ‘practical use’ is. With
this book, we aim to introduce new students directly at the start of their studies into the
world of physics, more specifically the world of Newton, Galilei and many others who laid
the foundation of physics. We aim to help students getting a good understanding of the
theory, i.e. the framework of physics. What is ‘work’ and why do we use it? Why is kinetic
energy 12𝑚𝑣2 and not 13𝑚𝑣2 or 12𝑚𝑣3? Both 3′s are fundamentally wrong, but what is
behind it?

1.1 About this book
Classical mechanics is the starting point of physics. Over the centuries, via Newton’s three
fundamental laws formulated around 1687, we have built a solid framework describing the
material world around us. On these pages, you will find a textbook with animations, demos,
interactive elements and exercises for studying introductory classical mechanics. Moreover,
we will consider the first steps of Einstein’s Special Theory of Relativity published 1905.

This material is made to support first year students from the BSc Applied Physics at Delft
University of Technology during their course Classical Mechanics and Relativity Theory,
MechaRela for short. But, of course, anybody interested in Classical Mechanics and Special
Relativity is more than welcome to use this book.

With this e-book our aim is to provide learning material that is:

• self-contained
• easy to modify and thus improve over the years
• interactive by providing demos, interactive elements and exercises next to the lectures

This book is based on Mudde & Rieger 2025.

That book was already beyond introductory level and presumed a solid basis in both
calculus and basic mechanics. All texts in this book were revised, additional examples and
exercises were included, picture and drawings have been updated and interactive materials
have been included. Hence, this book should be considered a stand-alone new version. Note
that we made good use of other open educational resources, several exercises stem from
such resources. Where we use external materials, we acknowledge and credit the original
sources.

1.1.1 Special features
In this book you will find some ‘special’ features. Some of these are indicated by their own
formatting:

Exercise 1.1: 🌶

Each chapter includes a variety of exercises tailored to the material. We distinguish
between exercises embedded within the instructional text and those presented on
separate pages. The in-text exercises should be completed while reading, as they offer
immediate feedback on whether the concepts and mathematics are understood. The
separate exercise sets are intended for practice after reading the text and attending the
lectures.

To indicate the level of difficulty, each exercise is marked with 1, 2, or 3 🌶

https://en.wikipedia.org/wiki/Isaac\_Newton
https://en.wikipedia.org/wiki/Albert\_Einstein
https://interactivetextbooks.tudelft.nl/dev/mechanica/


Intermezzos

Intermezzos contain background information on the topic or on the people that worked
on relevant concepts.

Experiments

We include some basic experiments that can be done at home.

Example: Examples

We provide various examples showcasing, e.g., calculations.

Python

We include in-browser python code, as well as downloadable .py files which can be
executed locally. If there is an in-browser, press the ON-button to ‘enable compute’. Try
it by pushing the ON-button and subsequently the play button and see the output in de
code-cell below.

print("The square root of 2 is: ", 2 ** 0.5)

The interactive elements, such as Python code, hover over functionality, embedded youtube
clips etc, only work in the online environment, not in the pdf or printed book. Where
possible we included qr codes and links to the online clips. We also include interactive
exercises made with Grasple. These exercises provide immediate feedback on your answers,
allowing you to learn from your mistakes and deepen your understanding of the material.
Here is an example exercise:

New concepts, such as Free body diagram, are introduced with a hover-over. If you move
your mouse over the italicized part of the text, you will get a short explanation.

You have the opportunity to download some of the materials as Jupyter Notebook file and
play with the code offline. We advise you to use Jupyter Lab in combination with MyST.

1.1.2 Feedback
This is the first version (second cycle) of this book. Although many have worked on it and
several iterations have been made, there might still be issues. Do you see a mistake? Do you
have suggestions for exercises? Are parts missing or abundant? Tell us! You can use the
Feedback button in the top right of the screen. You will need a (free) GitHub account to
report an issue!

1.2 Authors
Robert Mudde is Distinguished Professor of Science Education at the faculty of Applied
Sciences of Delft University of Technology in The Netherlands.

Bernd Rieger is Antoni van Leeuwenhoek Professor in the Department of Imaging Physics
at the faculty of Applied Sciences of Delft University of Technology in The Netherlands.

Freek Pols is an assistant professor in the Science & Engineering Education group at the
faculty of Applied Sciences of Delft University of Technology in The Netherlands.

Special thanks to Hanna den Hertog for (re)making most of the drawings, Luuk Fröling for
his technical support and Dion Hoeksema for converting the .js scripts to .py files. Also
thanks to Vebe Helmes, Alexander Lopes-Cardozo, Sep Schouwenaar, Alesja Zorina,
Winston de Greef and Boas Bakker for their comments and suggestions.

https://grasple.com/
https://mystmd.org/guide/quickstart-jupyter-lab-myst
http://www.tudelft.nl/
http://www.tudelft.nl/
https://www.tudelft.nl/en/faculty-of-applied-sciences/about-faculty/departments/science-engineering-education-seed
http://www.tudelft.nl/


1.3 Open Educational Resource
This book is licensed under a Creative Commons Attribution 4.0 International License
unless stated otherwise. It is part of the collection of Interactive Open Textbooks of TU Delft
Open.

This website is a Jupyter Book. Source files are available for download using the button on
the top right.

1.3.1 Software and license
This website is a Jupyter Book. Markdown source files are available for download using the
button on the top right, licensed under CC-BY-NC (unless stated otherwise). All python
codes / apps are freely reusable, adaptable and redistributable (CC0).

1.3.2 Images, videos, apps, intermezzos
The cover image is inspired by the work of 3Blue1Brown developer Grant Sanderson.

All vector images have been made by Hanna den Hertog, and are available in vector format
through the repository. For reuse, adapting and redistribution, adhere to the CC-BY licences.

We embedded several clips from 3Blue1Brown in accord with their licences requirements.

The embedded vpython apps are made freely available from trinket.

Some videos from NASA are included, where we adhere to their regulations.

At various places we use pictures which are in the public domain. We comply to the
regulations with regard to references.

The Intermezzos, which elaborate on the lives of various scientists and the efforts behind
key physical discoveries, are composed by drawing from a range of different sources. Rather
than directly reproducing any one account, these stories have been reworked into a
narrative that fits the context and audience of this book.

1.3.3 How to cite this book
R.F. Mudde, B. Rieger, C.F.J. Pols, Classical Mechanics & Special Relativity for Beginners, CC
BY-NC

@book{MuddeRiegerPols2025,
  author    = {Robert F. Mudde and Bernd Rieger and Freek Pols},
  title     = {Classical Mechanics \& Special Relativity for Beginners},
  year      = {2025},
  publisher = {TU Delft Open},
  note      = {CC BY-NC},
  url       = {https://interactivetextbooks.tudelft.nl/mecharela}
}

http://creativecommons.org/licenses/by/4.0/
https://textbooks.open.tudelft.nl/textbooks/catalog/category/interactive
https://textbooks.open.tudelft.nl/textbooks/index
https://textbooks.open.tudelft.nl/textbooks/index
https://jupyterbook.org/intro.html
https://jupyterbook.org/intro.html
https://www.3Blue1Brown.com/
https://www.3Blue1Brown.com/
https://www.3Blue1Brown.com/contact\#licensing-inquiry
https://trinket.io/
https://www.nasa.gov/nasa-brand-center/images-and-media/




2. Mechanics
Updated: 18 jan 2026 In this part we cover the fundamentals of Classical Mechanics. We
discuss the three laws of Newton and their first consequences. This part focusses on the
primary concepts and quantities: Force, Work, Energy, Angular Momentum. We derive and
discuss the conservation equations of these and their applications. Two topics receive
special attention: Oscillations and Collisions. We restrict the discussion to one-dimensional
cases as much as possible to help understand the physics and not get lost in multi-
dimensional problems at an early stage. However, more-dimensionality is not avoided as, for
instance, it should be clear from the start that physics not only deals with numbers (better:
scalars) but equally important, if not more important, with vectors. Moreover, angular
momentum and torque by their very nature require multi-dimensional thinking.

There are also subjects that we don’t touch upon. We will not deal with rigid bodies
(although some of the ideas are met when talking about kinetic energy: its translational
versus rotational flavors). Rigid bodies require a higher level of abstract thinking and will
take up quite some time that is not available in most introductory courses on Classical
Mechanics. Nor will we discuss non-inertial frames of reference and fictitious forces like the
centrifugal and Coriolis Force. This is left for later years. Finally, the concepts of the
Lagrangian and Hamiltonian are left for an advanced course in Classical Mechanics.



2.1 The language of Physics
Updated: 18 jan 2026 Physics is the science that seeks to understand the fundamental
workings of the universe: from the motion of everyday objects to the structure of atoms and
galaxies. To do this, physicists have developed a precise and powerful language: one that
combines mathematics, colloquial and technical language, and visual representations. This
language allows us not only to describe how the physical world behaves, but also to predict
how it will behave under new conditions.

In this chapter, we introduce the foundational elements of this language, covering how to
express physical ideas using equations, graphs, diagrams, and words. You’ll also get a first
taste of how physics uses numerical simulations as an essential complement to analytical
problem solving.

This language is more than just a set of tools—it is how physicists think. Mastering it is the
first step in becoming fluent in physics.

2.1.1 Representations
Physics problems and concepts can be represented in multiple ways, each offering a
different perspective and set of insights. The ability to translate between these
representations is one of the most important skills you will develop as a physics student. In
this section, we examine three key forms of representation: equations, graphs and drawings,
and verbal descriptions using the context of a base jumper, see Figure 1.

Figure 2.1:  A base jumper is used as context to get familiar with representation, picture
from https://commons.wikimedia.org/wiki/File:04SHANG4963.jpg

2.1.1.1 Verbal descriptions
Words are indispensable in physics. Language is used to describe a phenomenon, explain
concepts, pose problems and interpret results. A good verbal description makes clear:

• What is happening in a physical scenario;
• What assumptions are being made (e.g., frictionless surface, constant mass);
• What is known and what needs to be found.

https://commons.wikimedia.org/wiki/File:04SHANG4963.jpg


Example: Base jumper: Verbal description

Let us consider a base jumper jumping from a 300 m high building. We take that the
jumper drops from that height with zero initial velocity. We will assume that the stunt is
performed safely and in compliance with all regulations/laws. Finally, we will assume
that the problem is 1-dimensional: the jumper drops vertically down and experiences
only gravity, buoyancy and air-friction.

We know (probably from experience) that the jumper will accelerate. Picking up speed
increases the drag force acting on the jumper, slowing the acceleration (meaning it still
accelerates!). The speed keeps increasing until the jumper reaches its terminal velocity,
that is the velocity at which the drag (+ buoyancy) exactly balance gravity and the sum
of forces on the jumper is zero. The jumper no longer accelerates.

Can we find out what the terminal velocity of this jumper will be and how long it takes
to reach that velocity?

2.1.1.2 Visual representations
Visual representations help us interpret physical behavior at a glance. Graphs, motion
diagrams, free-body diagrams, and vector sketches are all ways to make abstract ideas more
tangible.

• Drawings help illustrate the situation: what objects are involved, how they are
moving, and what forces act on them.

• Graphs (e.g., position vs. time, velocity vs. time) reveal trends and allow for estimation
of slopes and areas, which have physical meanings like velocity and displacement.

Example: Base jumper: Free body diagram

The situation of the base jumper is sketched in Figure 2 using a Free body diagram. Note
that all details of the jumper are ignored in the sketch.

Figure 2.2:  Force acting on the jumper.

• 𝑚 = mass of jumper (in kg);
• 𝑣 = velocity of jumper (in m/s);
• 𝐹𝑔 = gravitational force (in N);
• 𝐹𝑓  = drag force by the air (in N);
• 𝐹𝑏 = buoyancy (in N): like in water also in air there is an upward force, equal to the

weight of the displaced air.



2.1.1.3 Equations
Equations are the compact, symbolic expressions of physical relationships. They tell us how
quantities like velocity, acceleration, force, and energy are connected.

Example: Base jumper: equations

The forces acting on the jumper are already shown in Figure 2. Balancing of forces tells
us that the jumper might reach a velocity such that the drag force and buoyancy exactly
balance gravity and the jumper no longer accelerates:

𝐹𝑔 = 𝐹𝑓 + 𝐹𝑏 (2.1)

We can specify each of the forces:

𝐹𝑔 = −𝑚𝑔 = −𝜌𝑝𝑉𝑝𝑔

𝐹𝑓 = 1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑣2

𝐹𝑏 = 𝜌𝑎𝑖𝑟𝑉𝑝𝑔

(2.2)

with 𝑔 the acceleration of gravity, 𝜌𝑝 the density of the jumper (≈ 103 kg/m3), 𝑉𝑝 the
volume of the jumper, 𝜌𝑎𝑖𝑟 the density of air (≈ 1.2 kg/m3), 𝐶𝐷 the so-called drag
coefficient, 𝐴 the frontal area of the jumper as seen by the air flowing past the jumper.

A physicist is able to switch between these representations, carefully considering which
representations suits best for the given situation. We will practice these when solving
problems.

Danger

Note that in the example above we neglected directions. In our equations we should
have been using vector notation, which we will cover in one of the next sections in this
chapter.



2.1.2 How to solve a physics problem?
One of the most common mistakes made by ‘novices’ when studying problems in physics is
trying to jump as quickly as possible to the solution of a given problem or exercise by
picking an equation and slotting in the numbers. For simple questions, this may work. But
when stuff gets more complicated, it is almost a certain route to frustration.

There is, however, a structured way of problem solving, that is used by virtually all
scientists and engineers. Later this will be second nature to you, and you will apply this way
of working automatically. It is called IDEA, an acronym that stands for:

Figure 2.3:  IDEA

• Interpret - First think about the problem. What does it mean? Usually, making a
sketch helps. Actually: always start with a sketch;

• Develop - Build a model, from coarse to fine, that is, first think in the governing
phenomena and then subsequently put in more details. Work towards writing down
the equation of motion and boundary conditions;

• Evaluate - Solve your model, i.e. the equation of motion;
• Assess - Check whether your answer makes any sense (e.g. units OK? What order of

magnitude did we expect?). Is our answer in the order of magnitude that we expected?

We will practice this and we will see that it actually is a very relaxed way of working and
thinking. We strongly recommend to apply this strategy for your homework and exams
(even though it seems strange in the beginning).

The first two steps (Interpret and Develop) typically take up most of the time spend on a
problem.



2.1.2.1 Example

Interpret

Three forces act on the jumper, shown in the figure below. Finding the terminal velocity
implies that all forces are balanced (∑ 𝐹 = 0).

The buoyancy force is much smaller than the force of gravity (about 0.1%) and we
neglect it.

Develop

We know all forces: gravitational force equals the drag force

𝐹𝑔 = 𝐹𝑓

𝑚𝑔 = 1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑣2 (2.3)

Evaluate

Assume a mass of 75 kg, an acceleration due to gravity of 9.81 m/s2, and air density of
1.2 kg/m3, a drag coefficient of 1, a frontal surface area of 0.7 m2.

𝑚𝑔 = 1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑣2 (2.4)

Rewriting:

𝑣 = √ 2𝑚𝑔
𝜌𝑎𝑖𝑟𝐶𝐷𝐴

𝑣 = √ 2 ⋅ 75 (kg) ⋅ 9.81 (m/s2)
1.2 (kg/m3) ⋅ 1 ⋅ 0.7 (m2)

𝑣 = 40 m/s

(2.5)

Assess

We may know that raindrops typically reach a terminal velocity of less than 10 m/s. A
terminal velocity of 40 m/s seems therefore plausible for a much heavier object.



Note that we didn’t solve the problem entirely! We only calculated the terminal velocity,
where the question was how long it would roughly take to reach such a velocity.

Good Practice

It is a good habit to make your mathematical steps small: one-by-one. Don’t make big
jumps or do multiple steps at once. If you make a mistake, it will be very hard to trace it
back.

Next: check always the dimensional correctness of your equations: that is easy to do and
you will find the majorities of your mistakes.

Finally, use letters to denote quantities, including 𝜋. The reason for this is:

• letters have meaning and you can easily put dimensions to them;
• letters are more compact;
• your expressions usually become easier to read and characteristic features of the

problem at hand can be recognized.

Powers of ten

In physics, powers of ten are used to express very large or very small quantities
compactly and clearly, from the size of atoms (≈ 10−10 m) to the distance between stars
(≈ 1016 m). This notation helps compare scales, estimate orders of magnitude, and
maintain clarity in calculations involving extreme values.

We use prefixes to denote these powers of ten in front of the standard units, e.g. km for
1000 meters, ms for milliseconds, GB for gigabyte that is 1 billionbytes. Here is a list
of prefixes.

Prefix Symbol Math Prefix Symbol Math
Yocto y 10−24 Base • 10⁰
Zepto z 10−21 Deca da 10¹
Atto a 10−18 Hecto h 10²
Femto f 10−15 Kilo k 10³
Pico p 10−12 Mega M 10⁶
Nano n 10−9 Giga G 10⁹
Micro µ 10−6 Tera T 10¹²
Milli m 10−3 Peta P 10¹⁵
Centi c 10−2 Exa E 10¹⁸
Deci d 10−1 Zetta Z 10²¹
Base • 10⁰ Yotta Y 10²⁴



On quantities and units

Each quantity has a unit. As there are only so many letters in the alphabet (even when
including the Greek alphabet), letters are used for multiple quantities. How can we
distinguish then meters from mass, both denoted with the letter ‘m’? Quantities are
expressed in italics (𝑚) and units are not (m).

We make extensively use of the International System of Units (SI) to ensure consistency
and precision in measurements across all scientific disciplines. The seven base SI units
are:

Unit Symbol Quantity
meter m length
kilogram kg mass
second s time
ampere A electric current
kelvin K temperature
mole mol amount of substance
candela cd luminous intensity

All other quantities can be derived from these using dimension analysis:

𝑊 = 𝐹 ⋅ 𝑠 = 𝑚𝑎 ⋅ 𝑠 = 𝑚Δ𝑣
Δ𝑡

⋅ 𝑠

= [N] ⋅ [m] = [kg] ⋅ [m/s2] ⋅ [m] = [kg] ⋅ [m/s]
[s]

⋅ [m] = [kgm2

s2 ]
(2.6)

Note: Newton is the person, fully written the unit N is newton, without capitalization of
the first letter.

Tip

For a more elaborate description of quantities, units and dimension analysis, see the
manual of the first year physics lab course.

https://contemporary-physicslab.github.io/NP-new-style/main/Deel2/MO2.html\#grootheden-eenheden-dimensie-analyse-en-constanten


2.1.3 Calculus
Most of the undergraduate theory in physics is presented in the language of Calculus. We do
a lot of differentiating and integrating, and for good reasons. The basic concepts and laws of
physics can be cast in mathematical expressions, providing us the rigor and precision that is
needed in our field. Moreover, once we have solved a certain problem using calculus, we
obtain a very rich solution, usually in terms of functions. We can quickly recognize and
classify the core features that help us understand the problem and its solution much deeper.

Given the example of the base jumper, we would like to know the jumper’s position as a
function of time. We can answer this question by applying Newton’s second law (though it
is covered in secondary school, the next chapter explains in detail Newton’s laws of motion):

∑ 𝐹 = 𝐹𝑔 − 𝐹𝑓 = 𝑚𝑎 = 𝑚𝑑𝑣
𝑑𝑡

(2.7)

𝑚𝑑𝑣
𝑑𝑡

= 𝑚𝑔 − 1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑣2 (2.8)

Clearly this is some kind of differential equation: the change in velocity depends on the
velocity itself (𝑑𝑣

𝑑𝑡 = ..𝑣(𝑡)). Before we even try to solve this problem (𝑣(𝑡) = …), we have to
dig deeper in the precise notation, otherwise we will get lost in directions and sign
conventions.

2.1.3.1 Differentiation
Many physical phenomena are described by differential equations. That may be because a
system evolves in time, or because it changes from location to location. In our treatment of
the principles of classical mechanics, we will use differentiation with respect to time a lot.
The reason is obviously found in Newton’s 2𝑛𝑑 law: 𝐹 = 𝑚𝑎.

The acceleration 𝑎 is the derivative of the velocity with respect to time (𝑎 = 𝑑𝑣
𝑑𝑡 ); velocity in

itself is the derivative of position with respect to time (𝑣 = 𝑑𝑥
𝑑𝑡 ). Or when we use the

equivalent formulation with momentum: 𝑑𝑝
𝑑𝑡 = 𝐹 . So, the change of momentum in time is

due to forces. Again, we use differentiation, but now of momentum.

There are three common ways to denote differentiation. The first one is by ‘spelling it out’:

𝑣 = 𝑑𝑥
𝑑𝑡

and 𝑎 = 𝑑𝑣
𝑑𝑡

= 𝑑2𝑥
𝑑𝑡2

(2.9)

• Advantage: it is crystal clear what we are doing.
• Disadvantage: it is a rather lengthy way of writing.

Newton introduced a different flavor: he used a dot above the quantity to indicate
differentiation with respect to time. So,

𝑣 = ̇𝑥, or 𝑎 = ̇𝑣 = ̈𝑥 (2.10)

• Advantage: compact notation, keeping equations compact.
• Disadvantage: a dot is easily overlooked or disappears in the writing.

Finally, in math often the prime is used: 𝑑𝑓
𝑑𝑥 = 𝑓′(𝑥) or 𝑑2𝑓

𝑑𝑥2 = 𝑓′′(𝑥). Similar advantage and
disadvantage as with the dot notation.

./Ch2\_NewtonsLaws.ipynb


Important

𝑣 = 𝑑𝑥
𝑑𝑡

= ̇𝑥 = 𝑥′ (2.11)

𝑎 = 𝑑𝑣
𝑑𝑡

= ̇𝑣 = 𝑑2𝑥
𝑑𝑡2

= ̈𝑥 (2.12)

It is just a matter of notation.

2.1.4 Definition of velocity, acceleration and momentum
In mechanics, we deal with forces on particles. We try to describe what happens to the
particles, that is, we are interested in the position of the particles, their velocity and
acceleration. We need a formal definition, to make sure that we all know what we are
talking about.

1-dimensional case

In one dimensional problems, we only have one coordinate to take into account to describe
the position of the particle. Let’s call that 𝑥. In general, 𝑥 will change with time as particles
can move. Thus, we write 𝑥(𝑡) showing that the position, in principle, is a function of time 𝑡.
How fast a particle changes its position is, of course, given by its velocity. This quantity
describes how far an object has traveled in a given time interval: 𝑣 = Δ𝑥

Δ𝑡 . However, this
definition gives actually the average velocity in the time interval Δ𝑡. The (momentary)
velocity is defined as:

Definition Velocity

𝑣 ≡ lim
Δ𝑡→0

𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡)
(𝑡 + Δ𝑡) − 𝑡

= 𝑑𝑥
𝑑𝑡

(2.13)

Note that we here use ≡ rather than = to indicate that this is a definition.

Similarly, we define the acceleration as the change of the velocity over a time interval Δ𝑡:
𝑎 = Δ𝑣

Δ𝑡 . Again, this is actually the average acceleration and we need the momentary one:

Definition Acceleration

𝑎 ≡ lim
Δ𝑡→0

𝑣(𝑡 + Δ𝑡) − 𝑣(𝑡)
(𝑡 + Δ𝑡) − 𝑡

= 𝑑𝑣
𝑑𝑡

(2.14)

Consequently,

𝑎 = 𝑑𝑣
𝑑𝑡

= 𝑑
𝑑𝑡

(𝑑𝑥
𝑑𝑡

) = 𝑑2𝑥
𝑑𝑡2

(2.15)



Now that we have a formal definition of velocity, we can also define momentum:
momentum is mass times velocity, in math:

Definition Momentum

𝑝 ≡ 𝑚𝑣 = 𝑚𝑑𝑥
𝑑𝑡

(2.16)

In the above, we have not worried about how we measure position or time. The latter is
straight forward: we use a clock to account for the time intervals. To find the position, we
need a ruler and a starting point from where we measure the position. This is a complicated
way of saying the we need a coordinate system with an origin. But once we have chosen
one, we can measure positions and using a clock measure changes with time.

Figure 2.5:  Calculating velocity requires both position and time, both easily measured e.g.
using a stopmotion where one determines the position of the car per frame given a constant

time interval.

2.1.4.1 Vectors - more dimensional case
Position, velocity, momentum, force: they are all vectors. In physics we will use vectors a lot.
It is important to use a proper notation to indicate that you are working with a vector. That
can be done in various ways, all of which you will probably use at some point in time. We
will use the position of a particle located at point P as an example.

Tip

See the linear algebra book on vectors.

Position vector

We write the position vector of the particle as ⃗𝑟. This vector is a ‘thing’, it exists in space
independent of the coordinate system we use. All we need is an origin that defines the
starting point of the vector and the point P, where the vector ends.

https://interactivetextbooks.tudelft.nl/linear-algebra/Chapter1/Vectors.html


Figure 2.6:  Some physical quantities (velocity, force etc) can be represented as a vector. The
have in common the direction, magnitude and point of application.

A coordinate system allows us to write a representation of the vector in terms of its
coordinates. For instance, we could use the familiar Cartesian Coordinate system {x,y,x} and
represent ⃗𝑟 as a column.

⃗𝑟 →
(
((
(𝑥

𝑦
𝑧)
))
) (2.17)

Alternatively, we could use unit vectors in the x, y and z-direction. These vectors have unit
length and point in the x, y or z-direction, respectively. They are denoted in varies ways,
depending on taste. Here are 3 examples:

𝑥, 𝑖̂, ⃗𝑒𝑥

𝑦, 𝑗, ⃗𝑒𝑦

𝑧, 𝑘̂, ⃗𝑒𝑧

(2.18)

With this notation, we can write the position vector ⃗𝑟 as follows:

⃗𝑟 = 𝑥𝑥 +𝑦𝑦 +𝑧𝑧
⃗𝑟 = 𝑥𝑖̂ +𝑦𝑗 +𝑧𝑘̂
⃗𝑟 = 𝑥 ⃗𝑒𝑥 + 𝑦 ⃗𝑒𝑦 + 𝑧 ⃗𝑒𝑧

(2.19)

Note that these representations are equivalent: the difference is in how the unit vectors are
named. Also note, that these three representations are all given in terms of vectors. That is
important to realize: in contrast to the column notation, now all is written at a single line.
But keep in mind: 𝑥 and 𝑦 are perpendicular vectors.

Other textbooks

Note that other textbooks may use bold symbols to represent vectors:

⃗𝐹 = 𝑚 ⃗𝑎 (2.20)
is the same as

𝑭 = 𝑚𝒂 (2.21)

Differentiating a vector



We often have to differentiate physical quantities: velocity is the derivative of position with
respect to time; acceleration is the derivative of velocity with respect to time. But you will
also come across differentiation with respect to position ( 𝑑

𝑑𝑥 ).
As an example, let’s take velocity. Like in the 1-dimensional case, we can ask ourselves: how
does the position of an object change over time? That leads us naturally to the definition of
velocity: a change of position divided by a time interval:

Definition Velocity (Vector)

⃗𝑣 ≡ lim
Δ𝑡→0

⃗𝑟(𝑡 + Δ𝑡) − ⃗𝑟(𝑡)
Δ𝑡

= 𝑑 ⃗𝑟
𝑑𝑡

(2.22)

What does it mean? Differentiating is looking at the change of your ‘function’ when you go
from 𝑥 to 𝑥 + 𝑑𝑥:

𝑑𝑓
𝑑𝑥

≡ lim
Δ𝑥→0

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)
Δ𝑥

(2.23)

In 3 dimensions we will have that we go from point P, represented by ⃗𝑟 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 to
‘the next point’ ⃗𝑟 + 𝑑 ⃗𝑟. The small vector 𝑑 ⃗𝑟 is a small step forward in all three directions,
that is a bit 𝑑𝑥 in the x-direction, a bit 𝑑𝑦 in the y-direction and a bit 𝑑𝑧 in the z-direction.
Consequently, we can write ⃗𝑟 + 𝑑 ⃗𝑟 as

⃗𝑟 + 𝑑 ⃗𝑟 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 + 𝑑𝑥𝑥 + 𝑑𝑦𝑦 + 𝑑𝑧𝑧
= (𝑥 + 𝑑𝑥)𝑥 + (𝑦 + 𝑑𝑦)𝑦 + (𝑧 + 𝑑𝑧)𝑧 (2.24)

Now, we can take a look at each component of the position and define the velocity
component as, e.g., in the x-direction

𝑣𝑥 = lim
Δ𝑡→0

𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡)
Δ𝑡

= 𝑑𝑥
𝑑𝑡

(2.25)

Applying this to the 3-dimensional vector, we get

⃗𝑣 ≡ 𝑑 ⃗𝑟
𝑑𝑡

= 𝑑
𝑑𝑡

(𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧)

= 𝑑𝑥
𝑑𝑡

𝑥 + 𝑑𝑦
𝑑𝑡

𝑦 + 𝑑𝑧
𝑑𝑡

𝑧

= 𝑣𝑥𝑥 + 𝑣𝑦𝑦 + 𝑣𝑧𝑧

(2.26)

Note that in the above, we have used that according to the product rule:

𝑑
𝑑𝑡

(𝑥𝑥) = 𝑑𝑥
𝑑𝑡

𝑥 + 𝑥𝑑𝑥
𝑑𝑡

= 𝑑𝑥
𝑑𝑡

𝑥 (2.27)

since 𝑑𝑥̂
𝑑𝑡 = 0 (the unit vectors in a Cartesian system are constant). This may sound trivial:

how could they change; they have always length 1 and they always point in the same
direction. Trivial as this may be, we will come across unit vectors that are not constant as
their direction may change. But we will worry about those examples later.

Now that the velocity of an object is defined, we can introduce its momentum:

Definition Momentum (Vector)

⃗𝑝 ≡ 𝑚 ⃗𝑣 = 𝑚𝑑 ⃗𝑟
𝑑𝑡

(2.28)

Albeit we have now a formal definition of momentum, we come later to its physical
interpretation.

We can use the same reasoning and notation for acceleration:



Definition Acceleration (Vector)

⃗𝑎 ≡ lim
Δ𝑡→0

⃗𝑣(𝑡 + Δ𝑡) − ⃗𝑣(𝑡)
Δ𝑡

= 𝑑 ⃗𝑣
𝑑𝑡

= 𝑑2 ⃗𝑟
𝑑𝑡2

(2.29)

Example: The base jumper

Given the above explanation, we can now reconsider our description of the base jumper.

We see a z-coordinate pointing upward, where the velocity. As gravitational force is in
the direction of the ground, we can state

𝐹𝑔 = −𝑚𝑔𝑧 (2.30)

Buoyancy is clearly along the z-direction, hence

𝐹𝑏 = 𝜌𝑎𝑖𝑟𝑉 𝑔𝑧 (2.31)

The drag force is a little more complicated as the direction of the drag force is always
against the direction of the velocity − ⃗𝑣. However, in the formula for drag we have 𝑣2. To
solve this, we can write

𝐹𝑓 = −1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴 | 𝑣 | ⃗𝑣 (2.32)

Note that 𝑧 is missing in (32) on purpose. That would be a simplification that is valid in
the given situation, but not in general.

2.1.5 Numerical computation and simulation
In simple cases we can obtain a physical model where we can derive an analytical solution.
In the case of the base jumper, an analytical solution exists, though it is not trivial and
requires some advanced operations as separation of variables and partial fractions:

𝑣(𝑡) = √𝑚𝑔
𝑘

tanh(√𝑘𝑔
𝑚

𝑡) (2.33)

with

𝑘 = 1
2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴 (2.34)

In this case there is nothing to add or gain from a numerical analysis. Nevertheless, it is
instructive to see how we could have dealt with this problem using numerical techniques.
One way of solving the problem is, to write a computer code (e.g. in python) that computes



from time instant to time instant the force on the jumper, and from that updates the velocity
and subsequently the position.

some initial conditions
t = 0
x = x_0
v = 0
dt = 0.1 

for i is 1 to N:
    compute F: formula
    compute new v: v[i+1] = v[i] - F[i]/m*dt
    compute new x: x[i+1] = x[i] + v[i]*dt
    compute new t: t[i+1] = t[i] + dt

You might already have some experience with numerical simulations. Figure 8 presents a
script for the software Coach, which you might have encountered in secondary school.

Figure 2.8:  An example of a numerical simulation made in Coach. At the left the iterative
calculation process, at the right the initial conditions.

Example: The base jumper

Let us go back to the context of the base jumper and write some code.

First we take: 𝑘 = 1
2𝜌𝑎𝑖𝑟𝐶𝐷𝐴 which eases writing. Newton’s second law then becomes:

𝑚 ⃗𝑎 = −𝑚 ⃗𝑔 − 𝑘 | 𝑣 | ⃗𝑣 (2.35)

We rewrite this to a proper differential equation for 𝑣 into a finite difference equation.
That is, we go back to how we came to the differential equation:

𝑚 lim
Δ𝑡→0

⃗𝑣(𝑡 + Δ𝑡) − ⃗𝑣(𝑡)
Δ𝑡

= ⃗𝐹𝑛𝑒𝑡 (2.36)

with ⃗𝐹𝑛𝑒𝑡 = −𝑚 ⃗𝑔 − 𝑘 | 𝑣 | ⃗𝑣

On a computer, we cannot literally take the limit of Δ𝑡 to zero, but we can make Δ𝑡 very
small. If we do that, we can rewrite the difference equation (thus not taken the limit):

⃗𝑣(𝑡 + Δ𝑡) = ⃗𝑣(𝑡) +
⃗𝐹

𝑚
Δ𝑡 (2.37)

This expression forms the heart of our numerical approach. We will compute 𝑣 at
discrete moments in time: 𝑡𝑖 = 0, Δ𝑡, 2Δ𝑡, 3Δ𝑡, …. We will call these values 𝑣𝑖. Note that
the force can be calculated at time 𝑡𝑖 once we have 𝑣𝑖.



𝐹𝑖 = 𝑚𝑔 − 𝑘 | 𝑣𝑖 | 𝑣𝑖

𝑣𝑖+1 = 𝑣𝑖 + 𝐹𝑖
𝑚

Δ𝑡
(2.38)

Similarly, we can keep track of the position:

𝑑𝑥
𝑑𝑡

= 𝑣 ⇒ 𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖Δ𝑡 (2.39)

With the above rules, we can write an iterative code:

Important to note is the sign-convention which we adhere to. Rather than using 𝑣2 we
make use of | 𝑣 | 𝑣 which takes into account that drag is always against the direction of
movement. Note as well the similarity between the analytical solution and the numerical
solution.

To come back to our initial problem:
It roughly takes 10 s to get close to terminal velocity (note that without friction the
velocity would be 98 m/s). The building is not high enough to reach this velocity
(safely).

Exercise 2.10: Base jumper with initial velocity 🌶

Change the code so that the base jumper starts with an initial velocity along the z-
direction.

Is the acceleration in the z-direction with and without initial velocity the same?
Elaborate.



Exercise 2.11: Unit analysis 🌶

Given the formula 𝐹 = 𝑘𝑣2. Derive the unit of 𝑘, expressed only in SI-units .

Exercise 2.12: Units based on physical constants¹ 🌶 🌶

In physics, we assume that quantities like the speed of light (𝑐) and Newton’s
gravitational constant (𝐺) have the same value throughout the universe, and are
therefore known as physical constants. A third such constant from quantum mechanics
is Planck’s constant (ℏ , ℎ an with a bar). In high-energy physics, people deal with
processes that occur at very small length scales, so our regular SI-units like meters and
seconds are not very useful. Instead, we can combine the fundamental physical constants
into different basis values.

1. Combine 𝑐, 𝐺 and ℏ into a quantity that has the dimensions of length.
2. Calculate the numerical value of this length in SI units (this is known as the Planck

length).
3. Similarly, combine 𝑐, 𝐺 and ℏ into a quantity that has the dimensions of energy

(indeed, known as the Planck energy) and calculate its numerical value.

2.1.6 Examples, exercises and solutions
Updated: 20 okt 2025

2.1.6.1 Exercises
### Your code

### Your code

¹Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)



Exercise 2.13: Reynolds numbers² 🌶 🌶

Physicists often use dimensionless quantities to compare the magnitude of two physical
quantities. Such numbers have two major advantages over quantities with numbers.
First, as dimensionless quantities carry no units, it does not matter which unit system
you use, you’ll always get the same value. Second, by comparing quantities, the concepts
‘big’ and ‘small’ are well-defined, unlike for quantities with a dimension (for example, a
distance may be small on human scales, but very big for a bacterium). Perhaps the best
known example of a dimensionless quantity is the Reynolds number in fluid mechanics,
which compares the relative magnitude of inertial and drag forces acting on a moving
object:

Re = inertialforces
dragforces

= 𝜌𝑣𝐿
𝜇

(2.40)

where 𝜌 is the density of the fluid (either a liquid or a gas), 𝑣 the speed of the object, 𝐿
its size, and 𝜇 the viscosity of the fluid. Typical values of the viscosity are 1.0 mPa ⋅ s for
water, 50 mPa ⋅ s for ketchup, and 1.8 ⋅ 10−5 Pa ⋅ s for air.

1. Estimate the typical Reynolds number for a duck when flying and when swimming
(you may assume that the swimming happens entirely submerged). NB: This will
require you looking up or making educated guesses about some properties of these
birds in motion. In either case, is the inertial or the drag force dominant?

2. Estimate the typical Reynolds number for a swimming bacterium. Again indicate
which force is dominant.

3. Oil tankers that want to make port in Rotterdam already put their engines in
reverse halfway across the North sea. Explain why they have to do so.

4. Express the Reynolds number for the flow of water through a (circular) pipe as a
function of the diameter 𝐷 of the pipe, the volumetric flow rate (i.e., volume per
second that flows through the pipe) 𝑄, and the kinematic viscosity 𝜈 ≡ 𝜂/𝜌.

5. For low Reynolds number, fluids will typically exhibit so-called laminar flow, in
which the fluid particles all follow paths that nicely align (this is the transparent
flow of water from a tap at low flux). For higher Reynolds number, the flow
becomes turbulent, with many eddies and vortices (the white-looking flow of
water from the tap you observe when increasing the flow rate). The maximum
Reynolds number for which the flow in a cylindrical pipe is typically laminar is
experimentally measured to be about 2300. Estimate the flow velocity and
volumetric flow rate of water from a tap with a 1.0 cm diameter in the case that
the flow is just laminar.

Exercise 2.14: Powers of ten 🌶

Calculate:

1. 10−4 ⋅ 10−8 =
2. 106

10−19⋅104 =
3. 1012 ⋅ 10−15 =

²Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)



Exercise 2.15: Moving a box 🌶

A box is on a frictionless incline of 10°. It is pushed upward with a force 𝐹𝑖 for Δ𝑡 =
0.5 s. It is then moving upward (inertia) but slows down due to gravity.

Below is a part of the python code. However, some essential elements of the code are
missing indicated by (..).

1. Include the correct code and run it.
2. Explain the two graphs, highlighting all essential features of the graph by relating

these to the given problem.
3. At what time is the acceleration 0? At what time is the box back at its origin?

The above context is not very realistic as friction is neglected. We, however, can include
friction easily as it is given by ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐹𝑤 = 𝜇 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐹𝑁 , with 𝜇 = 0.05. Note that the direction of
friction changes when the direction of the velocity changes!

4. Extend the code so that friction is included.

Exercise 2.16: Basejumper with parachute 🌶 🌶

Our base jumper has yet not a soft landing. Luckily she has a working parachute. The
parachute opens in 3.8 s reaching a total frontal area of 42.6 m2. We can model the drag
force using ⃗𝐹𝑑𝑟𝑎𝑔 = 𝑘 | 𝑣 | ⃗𝑣 with 𝑘 = 0.37.

Write the code that simulates this jump of the base jumper with deploying the
parachute. Show the (𝐹𝑑𝑟𝑎𝑔, 𝑡)-diagram and the (𝑣, 𝑡)-diagram. What is the minimal
height at which the parachute should be deployed?

Exercise 2.17: Circular motion 🌶 🌶

Remember from secondary school circular motion, where the required force is given by
𝐹 = 𝑚𝑣2

𝑟 . The corresponding vector form is: ⃗𝐹 = −𝑚𝑣2

𝑟 𝑟̂, or equivalent: ⃗𝐹 = −𝑚𝑣2

𝑟2 ⃗𝑟.
Now let’s simulate that motion.

Assume:

• 𝑚 = 1 kg
• ⃗𝑟0 = (3, 0) m
• ⃗𝑣(0) = (0, 7) m/s

Write the code. You know the output already (a circle with radius of 3)!

Solution 2.18: Solution to Exercise 1

𝐹 = 𝑘𝑣2

= [.][m2

s2 ] ⇒ [.] = [kg
m

] (2.41)



Solution 2.19: Solution to Exercise 2

The physical constants 𝑐, 𝐺 and ℏ have the following numerical values and SI-units:

𝑐 = 2.99792458 ⋅ 108 m/s
𝐺 = 6.674 ⋅ 10−11 m3/(kg ⋅ s2)
ℏ = 1.054 ⋅ 10−34 kgm2/s

(2.42)

Note: the value of 𝑐 is precise, i.e. by definition given this value. The second is defined
via the frequency of radiation corresponding to the transition between the two hyperfine
levels of the ground state of the caesium-133 atom.

If we want to combine these three units into a length scale, ℒ, we try the following:

[ℒ] = [𝑐]𝐴[𝐺]𝐵[ ℏ]𝐶 (2.43)

What we mean here, is that the units of the quantities (denoted by [.]) left and right
should be the same. Thus, we get:

𝑚1 = (𝑚
𝑠

)
𝐴
( 𝑚3

𝑘𝑔𝑠2 )
𝐵

(𝑘𝑔𝑚2

𝑠
)

𝐶

(2.44)

We try to find 𝐴, 𝐵, 𝐶 such that the above equation is valid. We can write this equation
as:

𝑚1 = 𝑚𝐴+3𝐵+2𝐶 ⋅ 𝑘𝑔−𝐵+𝐶 ⋅ 𝑠−𝐴−2𝐵−𝐶 (2.45)

If we split this into requirements for m, kg, s we get:

𝑚 : 1 = 𝐴 + 3𝐵 + 2𝐶
𝑘𝑔 : 0 = 𝐶 − 𝐵
𝑠 : 0 = −𝐴 − 2𝐵 − 𝐶

(2.46)

From the second equation we get 𝐵 = 𝐶 . Substitute this into the first and third and we
find:

𝑚 : 1 = 𝐴 + 5𝐵
𝑠 : 0 = −𝐴 − 3𝐵 (2.47)

Add these two equations: 1 = 2𝐵 → 𝐵 = 1
2  and thus 𝐶 = 1

2  and 𝐴 = −3
2 .

So if we plug these values into our starting equation we see:

ℒ = √ ℏ𝐺
𝑐3 = 1.62 ⋅ 10−35 m (2.48)

We can repeat this for energy, ℰ:

[ℰ] = [𝑐]𝛼[𝐺]𝛽[ ℏ]𝛾 (2.49)

Note: the unit of energy, [J] needs to be written in terms of the basic units: [𝐽 ] =
kgm2/s2.

The outcome is: 𝛼 = 5
2 , 𝛽 = −1

2 , 𝛾 = 1
2  and thus our energy is:

ℰ = √ ℏ𝑐5

𝐺
= 1.96 ⋅ 109 J (2.50)



Solution 2.20: Solution to Exercise 3

1. The size of a duck is on the order of 30 cm. It flies at a speed of about 70 km/h,
that is 20 m/s. Thus we compute for the Reynolds number of a flying duck:

𝑅𝑒 ≡ 𝜌𝑣𝐿
𝜇

= 4.0 ⋅ 105 (2.51)

Clearly, the inertial force is dominant.

What about a swimming duck? Now the velocity is much smaller: 𝑣 ≈ 1 m/s =
3.6 km/h. The viscosity of water is 𝜇𝑤 = 1.0 mPa ⋅ s and the water density is 1.0 ⋅
103 kg/m3. We, again, calculate the Reynolds number:

𝑅𝑒𝑤 ≡ 𝜌𝑣𝐿
𝜇

= 3.0 ⋅ 105 (2.52)

Hence, also in this case inertial forces are dominant. This perhaps comes as a surprise,
after all the velocity is much smaller and the viscosity much larger. However, the water
density is also much larger!

2. For a swimming bacterium the numbers change. The size is now about 1𝜇m and
the velocity 60𝜇 m/s (numbers taken from internet). That gives:

𝑅𝑒𝑏 ≡ 𝜌𝑣𝐿
𝜇

= 6.0 ⋅ 10−5 (2.53)

and we see that here viscous forces are dominating.

3. For an oil tanker the Reynolds number is easily on the order of 10⁸. Obviously,
viscous forces don’t do much. An oil tanker that wants to slow down cannot do so
by just stopping the motors and let the drag force decelerate them: the Reynolds
number shows that the viscous drag is negligible compared to the inertial forces.
Thus, the tanker has to use ots engines to slow down. Again the inertia of the
system is so large, that it will take a long time to slow down. And a long time,
means a long trajectory.

4. For the flow of water through a (circular) pipe the Reynolds number uses as length
scale the pipe diameter. We can relate the velocity of the water in the pipe tot the
total volume that is flowing per second through a cress section of the pipe:

𝑄 = 𝜋
4
𝐷2𝑣 → 𝑣 = 4𝑄

𝜋𝐷2 (2.54)

Thus we can also write 𝑅𝑒 as:

𝑅𝑒 ≡ 𝜌𝑣𝐷
𝜇

= 4𝑄
𝜋𝑚𝑢

𝜌 𝐷2 = 4𝑄
𝜋𝜈𝐷2 (2.55)

1. If 𝑅𝑒 = 2300 for the pipe flow, we have:

𝑅𝑒 = 𝑣𝐷
𝜈

= 2300 → 𝑣 = 2300𝜈
𝐷

(2.56)

with 𝜈 = 1.0 ⋅ 10−6 m2/s and 𝐷 = 1.0 ⋅ 10−2 m we find: 𝑣 = 0.23 m/s and 𝑄 = 1.8 ⋅
10−5 m3/s = 0.018 liter/s.



Solution 2.21: Solution to Exercise 4

1. = 10−12

2. = 1021

3. = 10−3



Solution 2.22: Solution to Exercise 5

# Moving a box

## Importing libraries
import numpy as np
import matplotlib.pyplot as plt

part_4 = 1 # Turn to 0 for first part

## Constants
m = 2 #kg
F = 30 #N
g = 9.81 #m/s^2
theta = np.deg2rad(10) #degrees

mu = 0.02
F_N = m*g*np.cos(theta) #N

## Time step
dt = 0.01 #s
t = np.arange(0, 10, dt) #s
t_F_stop = 0.5

## Initial conditions
x = np.zeros(len(t)) #m
v = np.zeros(len(t)) #m/s

## Loop to calculate position and velocity
for i in range(0, len(t)-1):
    if t[i] < t_F_stop:
        a = F/m - g*np.sin(theta) - F_N*mu*np.where(v[i] != 0,
np.sign(v[i]), 0)*part_4
    else:
        a = -g*np.sin(theta) - F_N*mu*np.where(v[i] != 0, np.sign(v[i]),
0)*part_4
    v[i+1] = v[i] + a*dt
    x[i+1] = x[i] + v[i]*dt

## Plotting results
figs, axs = plt.subplots(1, 2, figsize=(10, 5)) 

axs[0].set_xlabel('Time (s)')
axs[0].set_ylabel('Velocity (m/s)')
axs[0].plot(t, v, 'k.', markersize=1)

axs[1].set_xlabel('Time (s)')
axs[1].set_ylabel('Position (m)')
axs[1].plot(t, x, 'k.', markersize=1)

plt.show()



Solution 2.23: Solution to Exercise 6

# Simulation of a base jumper 

## Importing libraries
import numpy as np
import matplotlib.pyplot as plt

## Constants
A = 0.7 #m^2
m = 75 #kg
k = 0.37 #kg/m
g = 9.81 #m/s^2

## Time step
dt = 0.01 #s
t = np.arange(0, 12, dt) #s

## Initial conditions
z = np.zeros(len(t)) #m
v = np.zeros(len(t)) #m/s
z[0] = 300 #m

## Deploy parachute
A_max = 42.6 #m^2
t_deploy_start = 2 #s
dt_deploy = 3.8 #s

## Loop to calculate position and velocity
for i in range(0, len(t)-1):
    F = - m*g - k*A*abs(v[i])*v[i]  #N
    v[i+1] = v[i] + F/m*dt #m/s
    z[i+1] = z[i] + v[i]*dt #m
    # Check if the jumper is on the ground
    if z[i+1] < 0:
        break
    # Deploy parachute
    if t[i] > t_deploy_start and t[i] < t_deploy_start + dt_deploy:
        A += (A_max - A)/dt_deploy*dt 

## Plotting results
figs, axs = plt.subplots(1, 2, figsize=(10, 5)) 

axs[0].set_xlabel('Time (s)')
axs[0].set_ylabel('Velocity (m/s)')

axs[0].plot(t, v, 'k.', markersize=1, label='numerical solution')
axs[0].vlines(t_deploy_start, v[t==t_deploy_start],0, color='gray',
linestyle='--', label='parachute deploy')

axs[0].legend()

axs[1].set_xlabel('Time (s)')
axs[1].set_ylabel('Position (m)')

axs[1].plot(t, z, 'k.', markersize=1)
axs[1].vlines(t_deploy_start, 150,300, color='gray', linestyle='--',
label='parachute deploy')

plt.show()



Solution 2.24: Solution to Exercise 7

import numpy as np
import matplotlib.pyplot as plt

F = 49/3
m1 = 1
dt = 0.001
t = np.arange(0, 100, dt) # s

x1 = np.zeros(len(t)) # m
x1[0] = 3
y1 = np.zeros(len(t)) # m
vx = 0
vy = 7

for i in range(0, len(t)-1):
    ax = -F*(x1[i]-0)/np.sqrt(x1[i]**2 + y1[i]**2)/m1
    ay = -F*(y1[i]-0)/np.sqrt(x1[i]**2 + y1[i]**2)/m1
    vx = vx + ax*dt
    vy = vy + ay*dt
    x1[i+1] = x1[i] + vx*dt
    y1[i+1] = y1[i] + vy*dt

plt.figure(figsize=(4,4))
plt.plot(x1, y1, 'k.', markersize=1)
plt.xlabel('x (m)')
plt.ylabel('y (m)')
plt.show()

2.1.6.2 Solutions



2.2 Newton’s Laws
Updated: 18 jan 2026 Now we turn to one of the most profound breakthroughs in the history
of science: the laws of motion formulated by Isaac Newton. These laws provide a systematic
framework for understanding how and why objects move. They form the backbone of
classical mechanics. Using these three laws we can predict the motion of a falling apple, a
car accelerating down the road, or a satellite orbiting Earth (though some adjustments are
required in this context to make use of e.g. GPS!). More than just equations, they express
deep principles about the nature of force, mass, and interaction.

In this chapter, you will begin to develop the core physicist’s skill: building a simplified
model of the real world, applying physical principles, and using mathematical tools to reach
meaningful conclusions.

2.2.1 Newton’s Three Laws
Much of physics, in particular Classical Mechanics, rests on three laws that carry Newton’s
name:

Newton’s first law (N1)

Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi
quatenus illud a viribus impressis cogitur statum suum mutare.

If no force acts on an object, the object moves with constant velocity.

Newton’s second law (N2)

Mutationem motus proportionalem esse vi motrici impressæ, & fieri secundum lineam
rectam qua vis illa imprimitur.

If a (net) force acts on an object, the momentum of the object will change according to:

𝑑 ⃗𝑝
𝑑𝑡

= ⃗𝐹 (2.57)

Newton’s third law (N3)

Actioni contrariam semper & æqualem esse reactionem: sive corporum duorum actiones in
se mutuo semper esse æquales & in partes contrarias dirigi.

If object 1 exerts a force ⃗𝐹12 on object 2, then object 2 exerts a force ⃗𝐹21 equal in
magnitude and opposite in direction on object 1:

⃗𝐹21 = − ⃗𝐹12 (2.58)

N1 has, in fact, been formulated by Galileo Galilei. Newton has, in his N2, build upon it: N1
is included in N2, after all:
if ⃗𝐹 = 0, then 𝑑𝑝⃗

𝑑𝑡 = 0 → ⃗𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 → ⃗𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, provided 𝑚 is a constant.

Most people know N2 as

⃗𝐹 = 𝑚 ⃗𝑎 (2.59)
For particles of constant mass, the two are equivalent:
if 𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then

𝑑 ⃗𝑝
𝑑𝑡

= 𝑚𝑑 ⃗𝑣
𝑑𝑡

= 𝑚 ⃗𝑎 (2.60)

Nevertheless, in many cases using the momentum representation is beneficial. The reason is
that momentum is one of the key quantities in physics. This is due to the underlying
conservation law that we will derive in a minute. Momentum is a more fundamental concept



in physics than acceleration. That is another reason why physicists prefer the second way of
looking at forces.

Moreover, using momentum allows for a new interpretation of force: force is that quantity
that - provided it is allowed to act for some time interval on an object - changes the
momentum of that object. This can be formally written as:

𝑑 ⃗𝑝 = ⃗𝐹𝑑𝑡 ↔ Δ ⃗𝑝 = ∫ ⃗𝐹𝑑𝑡 (2.61)

The latter quantity ⃗𝐼 ≡ ∫ ⃗𝐹𝑑𝑡 is called the impulse.

Note

Momentum is in Dutch impuls; the English impulse is in Dutch stoot.

In Newton’s laws, velocity, acceleration and momentum are key quantities. We repeat here
their formal definition.

Definition

velocity : ⃗𝑣 ≡ lim
Δ𝑡→0

⃗𝑟(𝑡 + Δ𝑡) − ⃗𝑟(𝑡)
Δ𝑡

= 𝑑 ⃗𝑟
𝑑𝑡

acceleration : ⃗𝑎 ≡ lim
Δ𝑡→0

⃗𝑣(𝑡 + Δ𝑡) − ⃗𝑣(𝑡)
Δ𝑡

= 𝑑 ⃗𝑣
𝑑𝑡

momentum : ⃗𝑝 ≡ 𝑚 ⃗𝑣 = 𝑚𝑑 ⃗𝑟
𝑑𝑡

(2.62)

Exercise 1: 🌶

Consider a point particle of mass m, moving at a velocity 𝑣0 along the x-axis. At 𝑡 = 0 a
constant force acts on the particle in the positive x-direction. The force lasts for a small
time interval Δ𝑡.

What is the velocity of the particle for 𝑡 > Δ𝑡 ?

Solution to Exercise 1: 🌶

Interpret

First we make a sketch.

This is obviously a 1-dimensional problem. So, we can leave out the vector character
of e.g. the force.

Develop

We will use 𝑑𝑝 = 𝐹𝑑𝑡:

𝑑𝑝 = 𝐹𝑑𝑡 ⇒ Δ𝑝 = ∫
Δ𝑡

0
𝐹𝑑𝑡 = 𝐹Δ𝑡 → (2.63)

𝑝(Δ𝑡) = 𝑝(0) + 𝐹Δ𝑡 = 𝑚𝑣0 + 𝐹Δ𝑡 → (2.64)



𝑣(Δ𝑡) = 𝑣0 + 𝐹
𝑚

Δ𝑡 (2.65)

Note that this example could also be solved by N2 in the form of 𝐹 = 𝑚𝑎. It is
merely a matter of taste.

Exercise 2: A pushing contest 🌶

Exercise 3: Newton’s third law 🌶

The base jumper from chapter 1 just jumped from the tall building. According to
Newton’s third law there are two coupled forces. Which are these, and what is the
consequence of these two forces?

Solution to Exercise 3: Newton’s third law 🌶

The gravitational force acts from the earth on the jumper. Newton’s law states that the
jumper thus acts a gravitational force on the earth. Hence, the earth accelerates towards
the jumper!

Although this sounds silly, when comparing this idea to the sun and the planets, we
must draw the conclusion that the sun is actually wobbling as it is pulled towards the
various planets! See also this animated explanation

2.2.2 Conservation of Momentum
From Newton’s 2𝑛𝑑 and 3𝑟𝑑 law we can easily derive the law of conservation of momentum.
Assume there are only two point-particle (i.e. particles with no size but with mass), that
exert a force on each other. No other forces are present. From N2 we have:

𝑑 ⃗𝑝1
𝑑𝑡

= ⃗𝐹21

𝑑 ⃗𝑝2
𝑑𝑡

= ⃗𝐹12

(2.66)

From N3 we know:

⃗𝐹21 = − ⃗𝐹12 (2.67)

And, thus by adding the two momentum equations we get:
𝑑𝑝⃗1
𝑑𝑡

𝑑𝑝⃗2
𝑑𝑡

= ⃗𝐹21

= ⃗𝐹12 = − ⃗𝐹21

} ⇒ (2.68)

𝑑 ⃗𝑝1
𝑑𝑡

+ 𝑑 ⃗𝑝2
𝑑𝑡

= 0 → 𝑑
𝑑𝑡

( ⃗𝑝1 + ⃗𝑝2) = 0 (2.69)

⇒ ⃗𝑝1 + ⃗𝑝2 = 𝑐𝑜𝑛𝑠𝑡 𝑖.𝑒.𝑑𝑜𝑒𝑠𝑛𝑜𝑡𝑑𝑒𝑝𝑒𝑛𝑑𝑜𝑛𝑡𝑖𝑚𝑒 (2.70)

Note the importance of the last conclusion: if objects interact via a mutual force then
the total momentum of the objects cannot change. No matter what the interaction is.
This notion is easily extended to more interacting particles. The crux is that particles

http://localhost:3000/content/classic/ch0-language\#representations
https://youtube.com/shorts/SLRGX5H1bt4?si=ded\_KLH9kxSxQwQs


interact with one another via forces that obey N3. Thus for three interacting point particles
we would have (with ⃗𝐹𝑖𝑗 the force from particle i felt by particle j):

𝑑𝑝⃗1
𝑑𝑡

𝑑𝑝⃗2
𝑑𝑡

𝑑𝑝⃗3
𝑑𝑡

= ⃗𝐹21 + ⃗𝐹31

= ⃗𝐹12 + ⃗𝐹32 = − ⃗𝐹21 + ⃗𝐹32

= ⃗𝐹13 + ⃗𝐹23 = − ⃗𝐹31 − ⃗𝐹32

} (2.71)

Sum these three equations:

𝑑 ⃗𝑝1
𝑑𝑡

+ 𝑑 ⃗𝑝2
𝑑𝑡

+ 𝑑 ⃗𝑝3
𝑑𝑡

= 0 → 𝑑
𝑑𝑡

( ⃗𝑝1 + ⃗𝑝2 + ⃗𝑝3) = 0

⇒ ⃗𝑝1 + ⃗𝑝2 + ⃗𝑝3 = 𝑐𝑜𝑛𝑠𝑡. 𝑖.𝑒.𝑑𝑜𝑒𝑠𝑛𝑜𝑡𝑑𝑒𝑝𝑒𝑛𝑑𝑜𝑛𝑡𝑖𝑚𝑒
(2.72)

For a system of 𝑁  particles, extension is straight forward.

Intermezzo: Isaac Newton

At the end of the year of Galilei’s death, Isaac Newton was born in Woolsthorpe-by-
Colsterworth in England. He is regarded as the founder of classical mechanics and with
that he can be seen as the father of physics.

Figure 2.27:  Isaac Newton (1642-1727). From Wikimedia Commons, public domain.

In 1661, he started studying at Trinity College, Cambridge. In 1665, the university
temporarily closed due to an outbreak of the plague. Newton returned to his home and
started working on some of his breakthroughs in calculus, optics and gravitation.
Newton’s list of discoveries is unsurpassed. He ‘invented’ calculus (at about the same
time and independent of Leibniz). Newton is known for ‘the binomium of Newton’, the
cooling law of Newton. He proposed that light is made of particles and formulated his

https://commons.wikimedia.org/wiki/File:Portrait\_of\_Sir\_Isaac\_Newton,\_1689.jpg


law of gravity. Finally, he postulated his three laws that started classical mechanics and
worked on several ideas towards energy and work. Much of our concepts in physics are
based on the early ideas and their subsequent development in classical mechanics. The
laws and rules apply to virtually all daily life physical phenomena and only require
adaptation when we go to very small scale or extreme velocities and cosmology. In what
follows, we will follow his footsteps, but in a modern way that we owe to many physicist
and mathematicians that over the years shaped the theory of classical mechanics in a
much more comprehensive form. We do not only stand on shoulders of giants, we stand
on a platform carried by many.

Interesting to know is that his mentioning of standing on shoulders can be interpreted as
a sneer towards Robert Hooke (1635-1703), with he was in a fight with over several
things. Hooke was a rather short man… See, e.g., Gribbin (2019).

Important

In Newtonian mechanics time does not have a preferential direction. That means, in the
equations derived based on the three laws of Newton, we can replace 𝑡 by −𝑡 and the
motion will have different sign, but that’s it. The path/orbit will be the same, but
traversed in opposite direction. Also in special relativity this stays the same.

However, in daily life we experience a clear distinction between past, present and future.
This difference is not present in this lecture at all. Only by the second of law
thermodynamics the time axis obtains a direction, more about this in classes on
Statistical Mechanics.

2.2.3 Newton’s laws applied

2.2.3.1 Force addition, subtraction and decomposition
Newton’s laws describe how forces affect motion. Applying them often requires combining
multiple forces acting on an object, see Figure 4. This is done through vector addition,
subtraction, and decomposition—allowing us to find the net force and to analyze its
components in different directions (see this chapter in the book on linear algebra for a full
elaboration on vector addition and subtraction).

Figure 2.28:  Three forces acting on a particle. In which direction will it accelerate?

Example: Three forces acting on a particle

Consider three forces acting on a particle:

⃗𝐹1 = (1
0), ⃗𝐹2 = (1

1) and ⃗𝐹3 = ( −1
−0.5)

https://en.wikipedia.org/wiki/Newton%E2%80%93Hooke\_priority\_controversy\_for\_the\_inverse\_square\_law
https://en.wikipedia.org/wiki/Newton%E2%80%93Hooke\_priority\_controversy\_for\_the\_inverse\_square\_law
https://interactivetextbooks.tudelft.nl/linear-algebra/Chapter1/Vectors.html\#arrows-in-the-plane


What is the net force acting on the particle and in which direction will the particle
accelerate?

Exercise 4: Forces acting on a particle in 3D

Three forces act on a particle with mass 𝑚:

⃗𝐹1 =
(
((
( 1

0
−4)

))
), ⃗𝐹2 =

(
((
(1

1
3)
))
)𝑎𝑛𝑑 ⃗𝐹3 =

(
((
( −1

−0.5
1 )

))
) (2.73)

Determine the acceleration of this particle.

Solution to Exercise 4: Forces acting on a particle in 3D

⃗𝐹𝑛𝑒𝑡 = ∑ ⃗𝐹𝑖 = ⃗𝐹1 + ⃗𝐹2 + ⃗𝐹3

=
(
((
( 1

0
−4)

))
) +

(
((
(1

1
3)
))
) +

(
((
( −1

−0.5
1 )

))
) =

(
((
( 1 + 1 − 1

0 + 1 + −0.5
−4 + 3 + 1 )

))
) =

(
((
( 1

0.5
0 )

))
) (2.74)

Hence, the net force acting on the particle is 
√

12 + .52 = 1.1𝑁  and the particle will

accelerate in the direction (
1

0.5
0

), in essence just like in the previous example. The

magnitude of the acceleration is 𝑎 = 𝐹/𝑚 and can only be calculated when the mass of
the particle is specified.

Example: Incline

The box in Figure 5 is at rest. Calculate the frictional force acting on the box.

Figure 2.29:  A box is at rest on an incline.

Develop

As the box is not moving (i.e. it has a constant velocity) the sum of forces on the box
must be equal to zero. In the sketch we see two forces that clearly do not add up to
zero. A third force is needed.

Evaluate

If we assume that only friction as a third force is present, we require:

∑
𝑖

⃗𝐹𝑖 = 0 ⇒ ⃗𝐹𝑔 + ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐹𝑁 + ⃗𝐹𝑓 = 0 ⇒ ⃗𝐹𝑓 = − ⃗𝐹𝑔 − ⃗𝐹𝑁 (2.75)



We can progress further by assuming that the friction force acts parallel to the slope.
With this assumption, we can decompose gravity in its components perpendicular to
the slope and parallel to the slope.

⃗𝐹𝑔 = ⃗𝐹𝑔// + ⃗𝐹𝑔⟂ (2.76)

The normal force exactly balances the perpendicular component: that is what a
normal force does. Friction balances the parallel component of gravity:

⃗𝐹𝑓 + ⃗𝐹𝑔// = 0 → ⃗𝐹𝑓 = − ⃗𝐹𝑔// (2.77)

and its magnitude is thus 𝐹𝑓 = 𝐹𝑔 sin 𝛼

Reminder

Remember from secondary school how to break down a force vector into
components.

2.2.3.2 Acceleration due to gravity
In most cases the forces acting on an object are not constant. However, there is a classical
case that is treated in physics (already at secondary school level) where only one, constant
force acts and other forces are neglected. Hence, according to Newton’s second law, the
acceleration is constant.

When we first consider only the motion in the z-direction, we can derive:

𝑎 = 𝐹
𝑚

= 𝑐𝑜𝑛𝑠𝑡. (2.78)

Hence, for the velocity:

𝑣(𝑡) = 𝑣0 + ∫
𝑡𝑒

𝑡0

𝑎𝑑𝑡 = 𝑎(𝑡𝑒 − 𝑡0) + 𝑣0 (2.79)

assuming 𝑡0 = 0𝑎𝑛𝑑𝑡𝑒 = 𝑡 ⇒ 𝑣(𝑡) = 𝑣0 + 𝑎𝑡 the position is described by



𝑠(𝑡) = ∫
𝑡

0
𝑣(𝑡)𝑑𝑡 = ∫

𝑡

0
𝑎𝑡 + 𝑣0𝑑𝑡 = 1

2
𝑎𝑡2 + 𝑣0𝑡 + 𝑠0 (2.80)

Rearranging:

𝑠(𝑡) = 1
2
𝑎𝑡2 + 𝑣0𝑡 + 𝑠0 (2.81)

Exercise 5: Tossing a stone in the air 🌶

At a height of 1.5 m a stone is tossed in the air with a velocity of 10 m/s.

1. Calculate the maximum height that it reaches.
2. Calculate the time it takes to reach this point.
3. Calculate with which velocity it hits the ground.

Solution to Exercise 5: Tossing a stone in the air 🌶

Interpret

Figure 2.32:  A free body diagram of the situation with all relevant quantities.

Only gravity acts on the stone (in the downward direction). We will call the position
of the stone at time 𝑡: 𝑠(𝑡)
Initial conditions: 𝑡 = 0 → 𝑠(0) = 𝑠0 = 1.5 m𝑎𝑛𝑑 ̇𝑠 = 𝑣 = 𝑣0 = 10 m/s

Develop

1. 𝑠(𝑡) = 1
2𝑎𝑡2 + 𝑣0𝑡 + 𝑠0 Highest point reached when ̇𝑠 = 0

2. Δ𝑡 = Δ𝑣
𝑎

3. 𝑠(𝑡) = 1
2𝑎𝑡2 + 𝑣0𝑡 + 𝑠0. We are interested in the stone hitting the ground.

Thus, solve for 𝑠(𝑡) = 0 to find at what time this happens.

Evaluate



1. ̇𝑠 = 𝑎𝑡 + 𝑣0 = −𝑔𝑡 + 𝑣0 = 0 ⇒ 𝑡 = 1.02𝑠

𝑠(1.02) = −1
2 ∗ 9.81 ∗ 1.022 + 10 ∗ 1.02 + 1.5 = 6.6𝑚

1. See above.
2. 𝑠(𝑡) = 1

2𝑎𝑡2 + 𝑣0𝑡 + 𝑠0 = 𝑠𝑒

𝑡 = −𝑣0±√𝑣2
0−4(1

2𝑎(𝑠0−𝑠𝑒))
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2𝑎 = −10±√102−4(1
2(−9.81)(1.5))

−9.81 = 2.18𝑠
𝑣(2.18) = ̇𝑠(2.18) = 𝑣0 + 𝑎𝑡 = 10 − 9.81 ∗ 2.18 = −11.3 m/s
Note that 𝑡 = −0.14𝑠 is another solution, but not physically realistic.

Assess

The times we calculated are in the right order: First stone is tossed (at 𝑡0 = 0), then it
reaches its highest point (at 𝑡𝑚 = 1.02 s). After that it falls and hits the ground at
𝑡𝑒 = 2.18 s. Thus 𝑡0 < 𝑡𝑚 < 𝑡𝑒.

Furthermore, the velocity upon impact with the earth is negative as it should: the
stone is falling downward. Its magnitude is on the order of the initial upward
velocity, which makes sense. Finally, our answers have the right units.

NOTE: Some of these solutions can be derived more easily using the concept of
conservation of energy which will be covered in one of the next chapters.

Example: 2D-motion

We only considered motion in the vertical direction, however, objects tend to move in
three dimension. We consider now the two-dimensional situation, starting with an object
which is horizontally thrown from a height.

Figure 2.33:  A sketch of the situation where an object is thrown horizontally and the
horizontal distance should be calculated.

In the situation given in Figure 9 the object is thrown with a horizontal velocity of 𝑣𝑥0.
As no forces in the horizontal direction act on the object (N1), its horizontal motion can
be described by

𝑠𝑥(𝑡) = 𝑣𝑥0𝑡 (2.82)

In the vertical direction only the gravitational force acts (N2), hence the motion can be
described by (26). Taking the 𝑦-direction upward, a starting height 𝑦(0) = 𝐻0 and
𝑣𝑦(0) = 0 it becomes:

𝑠𝑦(𝑡) = 𝐻0 − 1
2
𝑔𝑡2 (2.83)

The total horizontal traveled distance of the object before hitting the ground then
becomes:



𝑠𝑥,𝑚𝑎𝑥 = 𝑣𝑥√2𝐻0
𝑔

(2.84)

This motion is visualized in Figure 10. The trajectory is shown with 𝑠𝑥 on the horizontal
axis and 𝑠𝑦 on the vertical axis. At regular time intervals Δ𝑡, velocity vectors are drawn
to illustrate the motion. Note that the horizontal and vertical components of velocity, 𝑣𝑥
and 𝑣𝑦, vary independently throughout the trajectory. Moreover, ⃗𝑣(𝑡) is the tangent of
𝑠(𝑡).

Figure 2.34:  The parabolic motion is visualized with blue velocity vectors 𝑣, 𝑣𝑥𝑎𝑛𝑑𝑣𝑦
shown at various points along the trajectory.

Exercise 6: Horizontal throw 🌶

Derive the above expression (29) yourselves.

Exercise 7: Projectile motion 🌶 🌶

Watch the recording below. What happens with the horizontal distance traveled per time
unit? And with the vertical distance traveled?

Figure 2.35:  A parabolic motion visualized, with the position stored per time unit :alt: A
short video of a small ball being shot upward at an angle. For each frame, it position is

marked by a dot. The dots make up a parabola.



Assume the object with mass 𝑚1 is shot from the ground with a velocity of 𝑣0 at an
angle of 𝜃. Derive where the object hits the ground in terms of 𝑚1, 𝑣0 and 𝜃.

How does the distance traveled changes when the mass of the object is doubled 𝑚2 =
2𝑚1?

Solution to Exercise 7: Projectile motion 🌶 🌶

The horizontal traveled distance is the same per time unit. For the vertical traveled
distance it decreases until 𝑣𝑦 = 0 and then increases.

Interpret

Develop

The basic formulas are:

𝑠𝑥(𝑡) = 𝑣𝑥𝑡 (2.85)

and

𝑠𝑦(𝑡) = 𝑣𝑦𝑡 − 1/2𝑔𝑡2 (2.86)

Evaluate

The horizontal traveled distance is given by:

𝑠𝑥(𝑡) = 𝑣𝑥𝑡 = 𝑣0 cos(𝜃)𝑡 (2.87)

The time the object stays in the air is

𝑠𝑦(𝑡) = 𝑣𝑦𝑡 − 1/2𝑔𝑡2 = 0 ⇒ 𝑡 = 0𝑡 =
2𝑣𝑦

𝑔
= 2𝑣0 sin(𝜃)

𝑔
(2.88)

Hence, the maximum distance traveled is:



𝑠𝑥(𝑡) = 𝑣𝑥𝑡 = 𝑣0 cos(𝜃)2𝑣0 sin(𝜃)
𝑔

= 2𝑣2
𝑜 sin(𝜃) cos(𝜃)

𝑔
(2.89)

Note that the distance traveled is independent of the mass!

Danger

Understand that the case above is specific in physics: in most realistic contexts multiple
forces are acting upon the object. Hence the equation of motion does not become 𝑠(𝑡) =
𝑠0 + 𝑣0𝑡 + 1/2𝑎𝑡2

Exercise 8: Constant acceleration due to gravity 🌶

We assumed a constant acceleration due to gravity. However, the gravitational force is
given by 𝐹 = −𝐺𝑚𝑀

𝑟2 .
Calculate at what height above the earth the acceleration due to gravity has
‘significantly’ changed from 9.81m/s2, say to 9.80m/s2.

Solution to Exercise 8: Constant acceleration due to gravity 🌶

The acceleration of gravity is found by setting the gravitation force equal to −𝑚𝑔:

−𝐺𝑚𝑀
𝑟2 = −𝑚𝑔(𝑟) ⇒ 𝑔(𝑟) = 𝐺𝑀

𝑟2 (2.90)

with 𝑀  the mass of the earth.

At the surface of the earth, 𝑟 = 𝑅𝑒 we have for the value of 𝑔𝑒 = 9.81 m/s2. We look for
the height above the earth surface where 𝑔 has dropped to 9.80 m/s2. If we call this
height 𝐻 , we write for the distance to the center of the earth 𝑟 = 𝑅𝑒 + 𝐻 .

Thus, we look for 𝑔(𝑟)
𝑔𝑒

= 9.80(m/s2)
9.81(m/s2) = 0.999:

𝑔(𝑟)
𝑔𝑒

= 𝐺𝑀/𝑟2

𝐺𝑀/𝑅2
𝑒

→ 𝑅2
𝑒

𝑟2 = 𝑅2
𝑒

(𝑅𝑒 + 𝐻)2 = 9.80
9.81

= 0.999 (2.91)

If we solve 𝐻  from this equation we find: 𝐻 = 3.25 km (we used 𝑅𝑒 = 6378 km).

Note

We could have also looked at the ratios (between 𝑔 and 𝑟), and found that 𝑅2 =√
.999 ⋅ 6378 = 6374.8 km. Hence, 𝐻 = 3.2 km.

If we would have said: ‘significant change’ in means 𝑔 → 9.81 → 9.71 m/s2, we would
have found 𝐻 = 32.8 km.

Exercise 9: A rocket in space 🌶

A rocket moves freely horizontal through space. At position 𝑥 = 2 it turns on its
propulsion. At position 𝑥 = 4 it turns off its propulsion. The force due to this propulsion
is directed perpendicular to the x-direction.

Provide a sketch of its movement highlighting all important parts.

2.2.3.3 Frictional forces
There are two main types of frictional force:



Exercise 2.37: Particle movement 🌶 🌶

Consider a particle which will travel a distance 𝑥. Find two different mathematical
expressions for a force acting on the particle in such a way that the particle will travel
the same distance in the same time for each 𝐹(𝑡) compared to a particle which travels at
constant speed. Assume no initial velocity for the two particles.

Solution 2.38: Solution to Exercise 1

Uniform motion (𝐹 = 𝑚𝑎 = 0 → 𝑠 = 𝑣0𝑡).

Constant acceleration 𝑎 = 𝑐𝑜𝑛𝑠𝑡 → 𝑠 = 1/2𝑎𝑡2, with 𝑎 = 2𝑣2
0

𝑠 .

Consider the third being a harmonic oscillating force field: 𝐹(𝑡) = 𝐴 sin(2𝜋𝑓𝑡) Then the
equation of motion becomes:

𝑎 = 𝐹/𝑚 = 𝐴
𝑚

sin(2𝜋𝑓𝑡) (2.92)

𝑣 = ∫ 𝑎𝑑𝑡 = 𝐴
𝑚2𝜋𝑓

cos(2𝜋𝑓𝑡) + 𝐶0 (2.93)

Assuming 𝑣(0) = 0 → 𝐶0 = − 𝐴
𝑚2𝜋𝑓

And,

𝑥 = ∫ 𝑣𝑑𝑡 = 𝐴
𝑚(2𝜋𝑓)2 sin(2𝜋𝑓𝑡) + 𝐶0𝑡 + 𝐶1 (2.94)

Assuming 𝑥(0) = 0 → 𝐶1 = 0

Hence:

𝑥 = 𝐴
𝑚(2𝜋𝑓)2 sin(2𝜋𝑓𝑡) − 𝐴

𝑚2𝜋𝑓
𝑡 (2.95)

Now, finding traveling the same distance in the same time AND the harmonic oscillation
is complete (hence, 𝑓 = 1

𝑡𝑒
):

𝑣0𝑡𝑒 = 𝐴𝑡2𝑒
𝑚(2𝜋)2 sin(2𝜋) − 𝐴𝑡𝑒

𝑚2𝜋
𝑡𝑒 (2.96)

𝑣0𝑡𝑒 = − 𝐴𝑡2𝑒
𝑚2𝜋

(2.97)

𝑣0 = − 𝐴𝑡𝑒
𝑚2𝜋

(2.98)

𝑚
𝐴

= − 𝑡𝑒
𝑣02𝜋

(2.99)

• Static friction prevents an object from starting to move. It adjusts in magnitude up to
a maximum value, depending on how much force is trying to move the object. This
maximum is given by

𝐹𝑠𝑡𝑎𝑡𝑖𝑐,𝑚𝑎𝑥 = 𝜇𝑠𝑁 (2.100)

where 𝜇𝑠 is the coefficient of static friction and 𝑁  is the normal force. If the applied force
exceeds this maximum, the object begins to slide.



• Kinetic (dynamic) friction opposes motion once the object is sliding. Its magnitude
is generally constant and given by

𝐹𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝜇𝑘𝑁 (2.101)

where 𝜇𝑘 is the coefficient of kinetic friction. This force does not depend on the velocity of
the object, only on the normal force and surface characteristics.

Friction always acts opposite to the direction of intended or actual motion and is essential in
both preventing and controlling movement.

Material Pair Static Friction (𝜇𝑠) Kinetic Friction (𝜇𝑘)
Rubber on dry concrete 1.0 0.8
Steel on steel (dry) 0.74 0.57
Wood on wood (dry) 0.5 0.3
Aluminum on steel 0.61 0.47
Ice on ice 0.1 0.03
Glass on glass 0.94 0.4
Copper on steel 0.53 0.36
Teflon on Teflon 0.04 0.04
Rubber on wet concrete 0.6 0.5
Leather on wood 0.56 0.4

Values are approximate and can vary depending on surface conditions.

Note

Not always are the friction coefficients constants. They may, for instance, depend on the
relative velocity between the two materials.

2.2.3.4 Momentum example
The above theoretical concept is simple in its ideas:

• a particle changes its momentum whenever a force acts on it;
• momentum is conserved;
• action = - reaction.

But it is incredible powerful and so generic, that finding when and how to use it is much less
straight forward. The beauty of physics is its relatively small set of fundamental laws. The
difficulty of physics is these laws can be applied to almost anything. The trick is how to do
that, how to start and get the machinery running. That can be very hard. Luckily there is a
recipe to master it: it is called practice.

Exercise 2.39: Block on an incline

A block with mass 𝑚 is put on an inclined plane of which we can change the inclination
angle 𝜃.

1. Determine the angle at which it starts to slide in terms of mass 𝑚, inclination
angle 𝜃, acceleration due to gravity 𝑔 and coefficient of static friction 𝜇𝑠.

2. Once it starts to slide, it will accelerate. Determine its acceleration in terms of mass
𝑚, inclination angle 𝜃, acceleration due to gravity 𝑔 and coefficient of kinetic
friction 𝜇𝑓 .



Solution 2.40: Solution to Exercise 2

1. There a two forces acting on 𝑚 parallel to the inclined plane: friction and gravity’s
component parallel to the slope. These two determine the motion along the slope:
if we tilt the plane the component of gravity parallel to the slope gets bigger. The
particle will start moving when we pass: 𝐹𝑔𝑥

= 𝐹𝑠 → 𝑚𝑔 sin(𝜃) = 𝑚𝑔𝜇𝑠 cos(𝜃) ⇒
𝜃𝑚𝑎𝑥 = tan−1(𝜇𝑠)

2. Once the particle is sliding downward, gravity and the kinetic friction determine
how fast:

𝐹𝑛𝑒𝑡 = 𝐹𝑔𝑥
− 𝐹𝑓 → 𝑚𝑎 = 𝑚𝑔 sin(𝜃) − 𝑚𝑔𝜇𝑘 cos(𝜃) ⇒ (2.102)

and

𝑎 = 𝑔(sin(𝜃) − 𝜇𝑘 cos(𝜃)) (2.103)

Exercise 2.41: 🌶

A point particle (mass 𝑚) is dropped from rest at a height ℎ above the ground. Only
gravity acts on the particle with a constant acceleration 𝑔 (= 9.813 m/s2).

• Find the momentum when the particle hits the ground.
• What would be the earth’ velocity upon impact?

2.2.4 Forces & Inertia
Newton’s laws introduce the concept of force. Forces have distinct features:

• forces are vectors, that is, they have magnitude and direction;
• forces change the motion of an object:

‣ they change the velocity, i.e. they accelerate the object

⃗𝑎 =
⃗𝐹

𝑚
↔ 𝑑 ⃗𝑣 = ⃗𝑎𝑑𝑡 =

⃗𝐹𝑑𝑡
𝑚

(2.108)

• or, equally true, they change the momentum of an object

𝑑 ⃗𝑝
𝑑𝑡

= ⃗𝐹 ↔ 𝑑 ⃗𝑝 = ⃗𝐹𝑑𝑡 (2.109)

Many physicists like the second bullet: forces change the momentum of an object, but for
that they need time to act.

Momentum is a more fundamental concept in physics than acceleration. That is another
reason why physicists prefer the second way of looking at forces.

Connecting physics and calculus

Let’s look at a particle of mass 𝑚, that has initially (say at 𝑡 = 0) a velocity 𝑣0. For 𝑡 > 0
the particle is subject to a force that is of the form 𝐹 = −𝑏𝑣. This is a kind of frictional
force: the faster the particle goes, the larger the opposing force will be.

We would like to know how the position of the particle is as a function of time.

We can answer this question by applying Newton 2:

𝑚𝑑𝑣
𝑑𝑡

= 𝐹 ⇒ 𝑚𝑑𝑣
𝑑𝑡

+ 𝑏𝑣 = 0 (2.110)

Clearly, we have to solve a differential equation which states that if you take the
derivative of 𝑣 you should get something like −𝑣 back. From calculus we know, that



Solution 2.42: Solution to Exercise 3

Let’s do this one together. We follow the standard approach of IDEA: Interpret (and
make your sketch!), develop (think ‘model’), evaluate (solve your model) and assess (does
it make any sense?).

Interpret

First a sketch: draw what is needed, no more, no less.

Figure 2.43:  align: center

Develop

Actually this is half of the work, as when deciding what is needed we need to think
what the problem really is. Above, is a sketch that could work. Both the object 𝑚 and
the earth (mass 𝑀 ) are drawn schematically. On each of them acts a force, where we
know that on 𝑚 standard gravity works. As a consequence of N3, a force equal in
strength but opposite in direction acts on 𝑀 .
Why do we draw forces? Well, the question mentions ‘momentum the particle hits
the ground’. Momentum and forces are coupled via N2.

We have drawn a z-coordinate: might be handy to remind us that this looks like a 1D
problem (remember: momentum and force are both vectors).

As a first step, we ignore the motion of the earth. Argument? The magnitude of the
ratio of the acceleration of earth over object is given by:

𝑎𝑒
𝑎𝑜

= | 𝐹𝑜→𝑒 | /𝑚𝑒
| 𝐹𝑒→𝑜 | /𝑚𝑜

= 𝑚𝑜
𝑚𝑒

(2.104)

here for the second equality we used N3.

For all practical purposes, the mass of the object is many orders of magnitude smaller
than that of the earth. Hence, we can conclude that the acceleration of the earth is
many orders of magnitude less than that of the object. The latter is of the order of 𝑔,
gravity’s acceleration constant at the earth. Thus, the acceleration of the earth is next
to zero and we can safely assume our lab system, that is connected to the earth, can
be treated as an inertial system with, for us, zero velocity.

Evaluate

The remainder is straightforward. Now we have an object, that moves under a
constant force. So its velocity will increase linearly in time:

𝑑𝑝
𝑑𝑡

= −𝑚𝑔 ⇒ 𝑝(𝑡) = 𝑚𝑣0⏟
=0

− 𝑚𝑔𝑡 = −𝑚𝑔𝑡 (2.105)

From the momentum we can calculate the velocity and from the velocity the
position:

𝑣 = −𝑔𝑡 ⇒ 𝑑𝑧
𝑑𝑡

= −𝑔𝑡 ⇒ 𝑧(𝑡) = 𝑧0⏟
=𝐻

− 1
2
𝑔𝑡2 = 𝐻 − 1

2
𝑔𝑡2 (2.106)

Solve for 𝑧(𝑇 ) = 0 and find 𝑇 = √2𝐻
𝑔 . Substitute this into the relation for 𝑣: 𝑣(𝑇 ) =

−
√

2𝑔𝐻 . As the earth-object system has conserved momentum, the velocity of the
earth is to a good approximation:

𝑝𝑒 + 𝑝𝑜 = 0 ⇒ 𝑣𝑒 = −𝑚𝑜
𝑚𝑒

𝑣𝑜 = 𝑚𝑜
𝑚𝑒

√2𝑔𝐻 (2.107)

AssessWe found that the particle changed its momentum from 𝑝𝑖 = 0 to 𝑝𝑓 = −𝑚𝑣. The
earth compensates for this, to keep momentum conserved. That gave that earth got a
tiny, tiny upwards velocity. We could estimate the displacement of the earth.
Suppose, the particle has mass 𝑚=1kg and is dropped from a height 𝐻 = 100m.
Then we get for the velocity of the mass upon impact: 𝑣 = −44.3m/s and a falling
time Δ𝑡 = 4.5s. For the earth we thus find that during the process the velocity is
smaller than 𝑣𝑒 and thus, the distance traveled by earth towards the mass is less than
Δ𝑥𝑒 < 𝑣𝑒Δ𝑡 = 1.6 ⋅ 10−24m. Indeed completely negligible, the size of the nucleus of
an atom is many orders of magnitude bigger!



exponential function have the feature that when we differentiate them, we get them
back. So, we will try 𝑣(𝑡) = 𝐴𝑒−𝜇𝑡 with 𝐴 and 𝜇 to be determined constants.

We substitute our trial 𝑣:

𝑚 ⋅ 𝐴 ⋅ −𝜇𝑒−𝜇𝑡 + 𝑏 ⋅ 𝐴𝑒−𝜇𝑡 = 0 (2.111)

This should hold for all 𝑡. Luckily, we can scratch out the term 𝑒−𝜇𝑡, leaving us with:

−𝑚𝐴𝜇 + 𝐴𝑏 = 0 (2.112)

We see, that also our unknown constant 𝐴 drops out. And, thus, we find

𝜇 = 𝑏
𝑚

(2.113)

Next we need to find 𝐴: for that we need an initial condition, which we have: at 𝑡 = 0 is
𝑣 = 𝑣0. So, we know:

𝑣(𝑡) = 𝐴𝑒− 𝑏
𝑚𝑡𝑎𝑛𝑑𝑣(0) = 𝑣0 (2.114)

From the above we see: 𝐴 = 𝑣0 and our final solution is:

𝑣(𝑡) = 𝑣0𝑒− 𝑏
𝑚𝑡 (2.115)

From the solution for 𝑣, we easily find the position of 𝑚 as a function of time. Let’s
assume that the particle was in the origin at 𝑡 = 0, thus 𝑥(0) = 0. So, we find for the
position

𝑑𝑥
𝑑𝑡

≡ 𝑣 = 𝑣0𝑒− 𝑏
𝑚𝑡 ⇒ 𝑥 = 𝑣0 ⋅ (−𝑚

𝑏
𝑒− 𝑏

𝑚𝑡) + 𝐵 (2.116)

We find 𝐵 with the initial condition and get as final solution:

𝑥(𝑡) = 𝑚𝑣0
𝑏

(1 − 𝑒− 𝑏
𝑚𝑡) (2.117)

If we inspect and assess our solution, we see: the particle slows down (as is to be
expected with a frictional force acting on it) and eventually comes to a stand still. At that
moment, the force has also decreased to zero, so the particle will stay put.

2.2.4.1 Inertia
Inertia is denoted by the letter 𝑚 for mass. And mass is that property of an object that
characterizes its resistance to changing its velocity. Actually, we should have written
something like 𝑚𝑖, with subscript i denoting inertia.

Why? There is another property of objects, also called mass, that is part of Newton’s
Gravitational Law.

Two bodies of mass 𝑚1 and 𝑚2 that are separated by a distance 𝑟12 attract each other via
the so-called gravitational force (𝑟̂12 is a unit vector along the line connecting 𝑚1 and 𝑚2):

⃗𝐹12 = −𝐺𝑚1𝑚2
𝑟2
12

𝑟̂12 (2.118)

Here, we should have used a different symbol, rather than 𝑚. Something like 𝑚𝑔, as it is by
no means obvious that the two ‘masses’ 𝑚𝑖 and 𝑚𝑔 refer to the same property. If you find
that confusing, think about inertia and electric forces. Two particles with each an electric
charge, 𝑞1 and 𝑞2, respectively exert a force on each other known as the Coulomb force:

⃗𝐹𝐶,12 = 1
4𝜋𝜀0

𝑞1𝑞2
𝑟2
12

𝑟̂12 (2.119)



We denote the property associated with electric forces by 𝑞 and call it charge. We have no
problem writing

⃗𝐹 = 𝑚 ⃗𝑎
⃗𝐹𝐶 = 1

4𝜋𝜀0

𝑞𝑄
𝑟2 𝑟̂ (2.120)

We do not confuse 𝑞 by 𝑚 or vice versa. They are really different quantities: 𝑞 tells us that
the particle has a property we call ‘charge’ and that it will respond to other charges, either
being attracted to, or repelled from. How fast it will respond to this force of another charged
particle depends on 𝑚. If 𝑚 is big, the particle will only get a small acceleration; the
strength of the force does not depend on 𝑚 at all. So far, so good. But what about 𝑚𝑔? That
property of a particle that makes it being attracted to another particle with this same
property, that we could have called ‘gravitational charge’. It is clearly different from
‘electrical charge’. But would it have been logical that it was also different from the property
inertial mass, 𝑚𝑖?

⃗𝐹 = 𝑚𝑖 ⃗𝑎

⃗𝐹𝑔 = −𝐺
𝑚𝑔𝑀𝑔

𝑟2 𝑟̂
(2.121)

As far as we can tell (via experiments) 𝑚𝑖 and 𝑚𝑔 are the same. Actually, it was Einstein
who postulated that the two are referring to the same property of an object: there is no
difference.

Force field
We have seen, forces like gravity and electrostatics act between objects. When you push a
car, the force is applied locally, through direct contact. In contrast, gravitational and
electrostatic forces act over a distance — they are present throughout space, though they
still depend on the positions of the objects involved.

One powerful way to describe how a force acts at different locations in space is through the
concept of a force field. A force field assigns a force vector (indicating both direction and
magnitude) to every point in space, telling you what force an object would experience if
placed there.

For example, the graph below at the left shows a gravitational field, described by ⃗𝐹𝑔 =
𝐺𝑚𝑀

𝑟2 𝑟̂. Any object entering this field is attracted toward the central mass with a force that
depends on its distance from that mass’s center.

The figure on the right shows the force field that a positively charged particle would feel
due to the presence of 2 negatively charged particles (both of the same charge). Clearly this
is a much more complicated force field.

Measuring mass or force
So far we did not address how to measure force. Neither did we discuss how to measure
mass. This is less trivial than it looks at first side. Obviously, force and mass are coupled via
N2: 𝐹 = 𝑚𝑎.

Figure 2.44:  Can force be measured using a balance?

The acceleration can be measured when we have a ruler and a clock, i.e. once we have
established how to measure distance and how to measure time intervals, we can measure
position as a function of time and from that velocity and acceleration.



But how to find mass? We could agree upon a unit mass, an object that represents by
definition 1kg. In fact we did. But that is only step one. The next question is: how do we
compare an unknown mass to our standard. A first reaction might be: put them on a balance
and see how many standard kilograms you need (including fractions of it) to balance the
unknown mass. Sounds like a good idea, but is it? Unfortunately, the answer is not a ‘yes’.

As on second thought: the balance compares the pull of gravity. Hence, it ‘measures’
gravitational mass, rather than inertia. Luckily, Newton’s laws help. Suppose we let two
objects, our standard mass and the unknown one, interact under their mutual interaction
force. Every other force is excluded. Then, on account on N2 we have

{ 𝑚1𝑎1 = 𝐹21
𝑚2𝑎2 = 𝐹12 = −𝐹21

(2.122)

where we used N3 for the last equality. Clearly, if we take the ratio of these two equations
we get:

𝑚1
𝑚2

= | 𝑎2
𝑎1

| (2.123)

irrespective of the strength or nature of the forces involved. We can measure acceleration
and thus with this rule express the unknown mass in terms of our standard.

Note

We will not use this method to measure mass. We came to the conclusion that we can’t
find any difference in the gravitational mass and the inertial mass. Hence, we can use
scales and balances for all practical purposes. But the above shows, that we can safely
work with inertial mass: we have the means to measure it and compare it to our
standard kilogram.

Now that we know how to determine mass, we also have solved the problem of measuring
force. We just measure the mass and the acceleration of an object and from N2 we can find
the force. This allows us to develop ‘force measuring equipment’ that we can calibrate using
the method discussed above.

Intermezzo: kilogram, unit of mass

In 1795 it was decided that 1 gram is the mass of 1 cm3 of water at its melting point.
Later on, the kilogram became the unit for mass. In 1799, the kilogramme des Archives
was made, being from then on the prototype of the unit of mass. It has a mass equal to
that of 1 liter of water at 4°C (when water has its maximum density).



Figure 2.45:  The International Prototype of the Kilogram, whose mass was defined to be
one kilogram from 1889 to 2019. Picture by BIPM, CC BY-SA 3.0 igo, https://commons.

wikimedia.org/w/index.php?curid=117707466

In recent years, it became clear that using such a standard kilogram does not allow for
high precision: the mass of the standard kilogram was, measured over a long time,
changing. Not by much (on the order of 50 micrograms), but sufficient to hamper high
precision measurements and setting of other standards. In modern physics, the kilogram
is now defined in terms of Planck’s constant. As Planck’s constant has been set (in 2019)
at exactly ℎ = 6.62607015 ⋅ 10−34𝑘𝑔𝑚2𝑠−1, the kilogram is now defined via ℎ, the meter
and second.

2.2.4.2 Eötvös experiment on mass
The question whether inertial mass and gravitational mass are the same has put
experimentalists to work. It is by no means an easy question. Gravity is a very weak force.
Moreover, determining that two properties are identical via an experiment is virtually
impossible due to experimental uncertainty. Experimentalist can only tell the outcome is
‘identical’ within a margin. Newton already tried to establish experimentally that the two
forms of mass are the same. However, in his days the inaccuracy of experiments was rather
large. Dutch scientist Simon Stevin concluded in 1585 that the difference must be less than
5%. He used his famous ‘drop masses from the church’ experiments for this (they were
primarily done to show that every mass falls with the same acceleration).

A couple of years later, Galilei used both fall experiments and pendula to improve this to:
less than 2%. In 1686, Newton using pendula managed to bring it down to less than 1‰ .

An important step forward was set by the Hungarian physicist, Loránd Eötvös (1848-1918).
We will here briefly introduce the experiment. For a full analysis, we need knowledge about
angular momentum and centrifugal forces that we do not deal with in this book.

The experiment
The essence of the Eötvös experiment is finding a set up in which both gravity (sensitive to
the gravitational mass) and some inertial force (sensitive to the inertial mass) are present.
Obviously, gravitational forces between two objects out of our daily life are extremely small.
These will be very difficult to detect and thus introduce a large error if the experiment relies
on measuring them. Eötvös came up with a different idea. He connected two different

https://www.nist.gov/si-redefinition/kilogram
https://commons.wikimedia.org/w/index.php?curid=117707466
https://commons.wikimedia.org/w/index.php?curid=117707466


objects with different masses, 𝑚1 and 𝑚2, via a (almost) massless rod. Then, he attached a
thin wire to the rod and let it hang down.

Figure 2.46:  align: center :alt: Mass m1 and m2 are connected to either end of a horizontal
rod. The rod, in turn, is connected by a vertical wire to the ceiling. The rod can rotate

around its suspension point.

Torsion balance used by Eötvös.

This is a sensitive device: any mismatch in forces or torques will have the setup either tilt or
rotate a bit. Eötvös attached a tiny mirror to one of the arms of the rod. If you shine a light
beam on the mirror and let it reflect and be projected on a wall, then the smallest deviation
in position will be amplified to create a large motion of the light spot on the wall.

In Eötvös experiment two forces are acting on each of the masses: gravity, proportional to
𝑚𝑔, but also the centrifugal force 𝐹𝑐 = 𝑚𝑖𝑅𝜔2, the centrifugal force stemming from the fact
that the experiment is done in a frame of reference rotating with the earth. This force is
proportional to the inertial mass. The experiment is designed such that if the rod does not
show any rotation around the vertical axis, then the gravitational mass and inertial mass
must be equal. It can be done with great precision and Eötvös observed no measurable
rotation of the rod. From this he could conclude that the ratio of the gravitational over
inertial mass differed less from 1 than 5 ⋅ 10−8. Currently, experimentalist have brought this
down to 1 ⋅ 10−15.

Note

The question is not if 𝑚𝑖/𝑚𝑔 is different from 1. If that was the case but the ratio would
always be the same, then we would just rescale 𝑚𝑔, that is redefine the value of the
gravitational const 𝐺 to make 𝑚𝑔 equal to 𝑚𝑖. No, the question is whether these two
properties are separate things, like mass and charge. We can have two objects with the
same inertial mass but give them very different charges. In analogy: if 𝑚𝑖 and 𝑚𝑔 are
fundamentally different quantities then we could do the same but now with inertial and
gravitational mass.

Tip

Want to know more about this experiment? Watch this videoclip.

https://nl.wikipedia.org/wiki/E%C3%B6tv%C3%B6s-experiment
https://youtu.be/w2r9ISVJOhs?si=xmfY4f8MLoup1fM4


2.2.5 Examples, exercises and solutions
Updated: 18 jan 2026 Here are some examples and exercises that deal with forces. Make sure
you practice IDEA.

2.2.5.1 Exercises set 1

Exercise 1: Force on a particle 🌶

Consider a point particle of mass 𝑚, moving at a velocity 𝑣0 along the x-axis. At 𝑡 = 0 a
constant force acts on the particle in the negative x-direction. The force lasts for a small
time interval Δ𝑡.

What is the strength of the force, if it brings the particle exactly to a zero-velocity? Start
by making a drawing.

Exercise 2: Shooting a ball 🌶

A ball is shot from a 10m high hill with a velocity of 10m/s under an angle of 30𝑜, see
Figure 1.

1. How long is the ball in the air?
2. How far does it travel in the horizontal direction?
3. With what velocity does the ball hit the ground?

Figure 2.47:  A ball on a hill launched under an angle.

Exercise 3: Constant force on a particle 🌶

A particle of mass 𝑚 moves along the 𝑥-axis. At time 𝑡 = 0 it is at the origin with
velocity 𝑣0. For 𝑡 > 0, a constant force acts on the particle. This is a 1-dimensional
problem.

• Derive the acceleration of the particle as a function of time.
• Derive the velocity of the particle as a function of time.
• Derive the position of the particle as a function of time.

Exercise 4: Time dependent force on a particle 🌶

A particle of mass 𝑚 moves along the 𝑥-axis. At time 𝑡 = 0 it is at the origin with
velocity 𝑣0. For 𝑡 > 0 the particle is subject to a force 𝐹0 sin(2𝜋𝑓0𝑡). This is a 1-
dimensional problem.

• Calculate the acceleration of the particle as a function of time.
• Calculate the velocity of the particle as a function of time.



• Calculate the position of the particle as a function of time.

Exercise 5: Particle trajectory 🌶

A particle follows a straight path with a constant velocity. At 𝑡 = 0 the particle is at
point 𝐴 with coordinate (0, 𝑦𝐴), while at 𝑡 = 𝑡1 it is at 𝐵 with coordinate (𝑥𝐵, 0). The
coordinates are given in a Cartesian system. The problem is 2-dimensional.

1. Make a sketch.
2. Find the position of the particle at arbitrary time 0 < 𝑡 < 𝑡1.
3. Derive the velocity of the particle from position as function of time.

Represent vectors in a Cartesian coordinate system using the unit vectors ̂𝑖 and 𝑗.

Exercise 6: Different coordinate systems 🌶 🌶

In Classical Mechanics we often use a coordinate system to describe motion of object. In
this exercise, you will look at two Cartesian coordinate systems. System S has
coordinates (𝑥, 𝑦) and corresponding unit vectors 𝑥 and 𝑦.
The second system, S’, uses (𝑥′, 𝑦′) and corresponding unit vectors. The 𝑥′-axis makes
an angle of 30∘ with the 𝑥-axis (measured counter-clockwise).

1. Make a sketch.
2. Determine the relations between 𝑥′ and 𝑥, 𝑦 as well as between 𝑦′ and 𝑥, 𝑦

An object has, according to S, a velocity of ⃗𝑣 = 3𝑥 + 5𝑦.
1. Determine the velocity according to S’.

Exercise 7: Rotating unit vectors 🌶

According to your observations, a particle is located at position (1,0) (you use a Cartesian
coordinate system). The particle has no velocity and no forces are acting on it.
Another observer, S’, uses a Cartesian coordinate system described by (𝑥′, 𝑦′). You notice
that her unit vectors rotate at a constant speed compared to your unit vectors:

𝑥′ = cos(2𝜋𝑓𝑡)𝑥 + sin(2𝜋𝑓𝑡)𝑦 (2.124)

𝑦′ = − sin(2𝜋𝑓𝑡)𝑥 + cos(2𝜋𝑓𝑡)𝑦 (2.125)

1. Find the position of the particle according to the other observer, S’.
2. Calculate the velocity of the particle according to S’.

Exercise 8: Moving over a frictionless table🌶

A particle of mass 𝑚 moves at a constant velocity 𝑣0 over a frictionless table. The
direction it is moving in, is at 45∘ with the positive 𝑥-axis. At some point in time, the
particle experiences a force ⃗𝐹 = −𝑏 ⃗𝑣 with 𝑏 > 0.
We call this time 𝑡 = 0 and take the position of the particle at that time as our origin.

1. Make a sketch.
2. Determine whether this problem needs to be analyzed as a 1D or a 2D problem.
3. Set up N2 in the form 𝑚𝑑 ⃗𝑣

𝑑𝑡 = ⃗𝐹
4. Solve N2 and find the velocity of the particle as a function of time.
5. What happens to the particle for large 𝑡?

Exercise 9: Parabolic trajectory with maximum area³ 🌶 🌶

³Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)



A ball is thrown at speed 𝑣 from zero height on level ground. We want to find the angle 𝜃
at which it should be thrown so that the area under the trajectory is maximized.

1. Sketch of the trajectory of the ball.
2. Use dimensional analysis to relate the area to the initial speed 𝑣 and the

gravitational acceleration 𝑔.
3. Write down the 𝑥 and 𝑦 coordinates of the ball as a function of time.
4. Find the total time the ball is in the air.
5. The area under the trajectory is given by 𝐴 = ∫ 𝑦d𝑥. Make a variable

transformation to express this integral as an integration over time.
6. Evaluate the integral. Your answer should be a function of the initial speed 𝑣 and

angle 𝜃.
7. From your answer at (6), find the angle that maximizes the area, and the value of

that maximum area.

Exercise 10: Two attracting particles⁴ 🌶

Two particles on a line are mutually attracted by a force 𝐹 = −𝑎𝑟, where 𝑎 is a constant
and 𝑟 the distance of separation. At time 𝑡 = 0, particle A of mass 𝑚 is located at the
origin, and particle B of mass 𝑚/4 is located at 𝑟 = 5.0 cm. Both particles have zero
velocity at 𝑡 = 0. If the particles are at rest at 𝑡 = 0, at what value of 𝑟 do they collide?

2.2.5.2 Answers set 1

Solution to Exercise 1: Force on a particle 🌶

⃗𝐹 = −𝑚𝑣0
Δ𝑡 𝑥

Solution to Exercise 2: Shooting a ball 🌶

Interpret

Develop

We know 𝑣𝑦 = 𝑣 sin(𝜃) and 𝑣𝑥 = 𝑣 cos(𝜃).

The motion of the ball can be spilt in two components: horizontal, i.e. x-direction,
and vertical, tha is y-direction.

In the vertical direction gravity acts: 𝐹𝑦 = −𝑚𝑔. Thus the equation of motion in the
y-direction is: 𝑚𝑎𝑦 = 𝐹𝑦 = −𝑚𝑔.𝑇ℎ𝑒𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑐𝑎𝑛𝑡ℎ𝑢𝑠𝑏𝑒𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑎𝑠
s_y(t)=s_{y0}+v_{y0}t-1/2gt^2$.

In the horizontal direction no force is active, thus: 𝑚𝑎𝑥 = 0 → 𝑠𝑥(𝑡) = 𝑠𝑥0 + 𝑣𝑥0𝑡

⁴Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)



The magnitude of the velocity of the ball hitting the ground can be expressed in
terms of 𝑣𝑥 and 𝑣𝑦 as 𝑣𝑒 = √𝑣2

𝑥 + 𝑣2
𝑦

Evaluate

We have as initial velocity: 𝑣𝑦0 = 𝑣 sin(𝜃) = 10 ∗ sin(30) = 5𝑚/𝑠
𝑣𝑥0 = 𝑣 cos(𝜃) = 10 ∗ cos(30) = 5

√
3𝑚/𝑠

Solving 𝑠𝑦(𝑡) = 𝑠𝑦0 + 𝑣𝑦0𝑡 − 1/2𝑔𝑡2 for 𝑠𝑦 = 0 with 𝑠𝑦0 = 𝐻  gives for the time the
ball is in the air:

𝑡𝑎𝑖𝑟 =
𝑣𝑦0

𝑔
+ √𝑣2

𝑦0

𝑔2 + 2𝐻
𝑔

= 2.77𝑠 (2.126)

Next, we realize that 𝑣𝑥 = 𝑐𝑜𝑛𝑠𝑡 = 𝑣𝑥0 as there is no force acting in the x-direction.
Thus the horizontal distance traveled is

$$\Delta x = v_{X0} t_{air} = 24.0 \text{m}

For the velocity when hitting the ground is (that is, its magnitude), we need both the
x and y-component:

𝑣𝑥 = 𝑣𝑥0 = 8.66𝑚/𝑠

𝑣𝑦 = 𝑣0𝑦 − 𝑔𝑡 → 𝑣𝑦(𝑡𝑎𝑖𝑟) = √𝑣2
𝑦0 + 2𝑔𝐻 = 14.9𝑚/𝑠

(2.127)

𝑣𝑔𝑟𝑜𝑢𝑛𝑑 = √𝑣2
𝑥 + 𝑣2

𝑦 = √𝑣2
𝑥0 + 𝑣2

𝑦 = 17.2𝑚/𝑠 (2.128)

Assess

The velocity upon impact is larger than the initial velocity. This makes sense. The
ball first travels upwards, then downwards and will pass 𝑠𝑦 = 𝐻  again on the
downward motion. Then it will further accelerate to the ground and thus have a
larger y-component of the velocity than at the start.

Solution to Exercise 3: Constant force on a particle 🌶

1. 𝑎 = 𝐹
𝑚  is constant

2. 𝑣(𝑡) = 𝑣0 + 𝑎𝑡
3. 𝑥(𝑡) = 𝑣0𝑡 + 1

2𝑎𝑡2

Solution to Exercise 4: Time dependent force on a particle 🌶

1. 𝑎 = 𝐹
𝑚 = 𝐹0

𝑚 sin(2𝜋𝑓0𝑡) is not constant
2. 𝑣(𝑡) = 𝑣0 + 𝐹0

2𝜋𝑓0𝑚(1 − cos(2𝜋𝑓0𝑡))
3. 𝑥(𝑡) = 𝑣0𝑡 + 𝐹0

2𝜋𝑓0𝑚𝑡 − 𝐹0
4𝜋2𝑓2

0𝑚 sin 2𝜋𝑓0𝑡

Solution to Exercise 5: Particle trajectory 🌶

1.



2. Particle moves at constant velocity, thus path is a straight line:

⃗𝑟(𝑡) = ⃗𝑟0 + ⃗𝑣0𝑡 = 𝑥0 𝑖̂ + 𝑦0𝑗 + 𝑣0𝑥𝑡𝑖 + 𝑣0𝑦𝑡𝑗 (2.129)

At 𝑡 = 0 : ⃗𝑟(0) = 0̂𝑖 + 𝑦𝐴𝑗 → ⃗𝑟(0) = ⃗𝑟0 = 0̂𝑖 + 𝑦𝐴𝑗 → 𝑥0 = 0𝑎𝑛𝑑𝑦0 = 𝑦𝐴

At 𝑡 = 𝑡1:

⃗𝑟(𝑡1) = 𝑥𝐵 𝑖̂ + 0(̂)𝑗 →
⃗𝑟(𝑡1) = ⃗𝑟0 + ⃗𝑣0𝑡1

= (0 + 𝑣0𝑥𝑡1)̂𝑖 + (𝑦𝐴 + 𝑣0𝑦𝑡1)𝑗 →

𝑣0𝑥 = 𝑥𝐵
𝑡1

𝑎𝑛𝑑𝑣0𝑦 = −𝑦𝐴
𝑡1

(2.130)

3. Thus, we find ⃗𝑣 = 𝑥𝐵
𝑡1

𝑖̂ − 𝑦𝐴
𝑡1

𝑗

Solution to Exercise 6: Different coordinate systems 🌶 🌶

1.

2.

𝑥′ = cos 𝜃𝑥 + sin 𝜃𝑦 = 1
2
√

3𝑥 + 1
2
𝑦

𝑦′ = − sin 𝜃𝑥 + cos 𝜃𝑦 = −1
2
𝑥 + 1

2
√

3𝑦
(2.131)

2. Invert:

𝑥 = cos 𝜃𝑥′ − sin 𝜃𝑦′ = 1
2
√

3𝑥′ − 1
2
𝑦′

𝑦 = sin 𝜃𝑥′ + cos 𝜃𝑦′ = 1
2
𝑥′ + 1

2
√

3𝑦′
(2.132)



   velocity:

⃗𝑣 = 𝑣𝑥𝑥 + 𝑣𝑦𝑦
= 𝑣𝑥(cos 𝜃𝑥′ − sin 𝜃𝑦′) + 𝑣𝑦(sin 𝜃𝑥′ + cos 𝜃𝑦′)

= (𝑣𝑥 cos 𝜃 + 𝑣𝑦 sin 𝜃)𝑥′ + (−𝑣𝑥 sin 𝜃 + 𝑣𝑦 cos 𝜃)𝑦′
(2.133)

    from which we find

⃗𝑣 = (3
2
√

3 + 5
2
)𝑥′ + (−3

2
+ 5

2
√

3)𝑦′ (2.134)

Solution to Exercise 7: Rotating unit vectors 🌶

𝑥′ = cos(2𝜋𝑓𝑡)𝑥 + sin(2𝜋𝑓𝑡)𝑦
𝑦′ = − sin(2𝜋𝑓𝑡)𝑥 + cos(2𝜋𝑓𝑡)𝑦 (2.135)

The unit vectors of S’ rotate with a frequency 𝑓  with respect to the unit vectors of S.
This means, that the coordinate system of S’ rotates: the rotation angle is a function of
time, i.e. 𝜃(𝑡) = 2𝜋𝑓𝑡

From the figure we see, that the coordinates of a point P, (𝑥𝑝, 𝑦𝑝) according to S, are
related to those used by S’, (𝑥′𝑝, 𝑦′𝑝) via:

𝑥𝑝 = 𝑂𝑃 cos(𝛼 + 𝜃) = 𝑂𝑃(cos 𝛼 cos 𝜃 − sin 𝛼 sin 𝜃) = 𝑥′𝑝 cos 𝜃 − 𝑦′𝑝 sin 𝜃
𝑦𝑝 = 𝑂𝑃 sin(𝛼 + 𝜃) = 𝑂𝑃(cos 𝛼 sin 𝜃 + sin 𝛼 cos 𝜃) = 𝑥′𝑝 sin 𝜃 + 𝑦′𝑝 cos 𝜃(2.136)

or written as the coordinate transformation:

𝑥 = 𝑥′ cos 𝜃 − 𝑦′ sin 𝜃
𝑦 = 𝑥′ sin 𝜃 + 𝑦′ cos 𝜃 (2.137)

with its inverse

𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃
𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃 (2.138)

Note that in this case 𝜃 = 2𝜋𝑓𝑡, that is: it is a function of 𝑡.

a) From the above relation we find that the point (1,0) in S will be denoted by S’ as
(𝑥′(𝑡), 𝑦′(𝑡)) = (cos(2𝜋𝑓𝑡), − sin(2𝜋𝑓𝑡))



b) the velocity of the point (1,0) in S is according to S of course zero: 𝑑𝑥
𝑑𝑡 = 0, 𝑑𝑦

𝑑𝑡 = 0 S’
will say:

𝑥′(𝑡) = cos(2𝜋𝑓𝑡) → 𝑑𝑥′
𝑑𝑡

= −2𝜋𝑓 sin(2𝜋𝑓𝑡)

𝑦′(𝑡) = − sin(2𝜋𝑓𝑡) → 𝑑𝑦′
𝑑𝑡

= 2𝜋𝑓 cos(2𝜋𝑓𝑡)
(2.139)

Solution to Exercise 8: Moving over a frictionless table🌶

1.

2. Since ⃗𝑣0 and ⃗𝐹  are parallel, the particle will not deviate from the line x=y. Hence,
we are dealing with a 1-dimensional problem. The original coordinate system,
(𝑥, 𝑦), is not wrong: it is just not handy as it makes the problem look like 2D. Thus,
we change our coordinate system, such that the new 𝑥-axis coincides with the
original x=y line.

3. N2: 𝑚𝑑𝑣
𝑑𝑡 = −𝑏𝑣 with initial conditions: 𝑡 = 0 → 𝑥 = 0 and 𝑡 = 0 → 𝑣 = 𝑣0

4. 𝑑𝑣
𝑑𝑡 − 𝑏

𝑚𝑣 = 0 → 𝑣 = 𝐴𝑒− 𝑏
𝑚𝑡 initial condition: 𝑡 = 0 → 𝑣 = 𝑣0 ⇒ 𝐴 = 𝑣0 Thus:

𝑣(𝑡) = 𝑣0𝑒− 𝑏
𝑚𝑡

5. for 𝑡 → ∞ : 𝑣 → 0. The particle comes to rest and then, obviously, the friction
force is zero.

Solution to Exercise 9: Parabolic trajectory with maximum area

1.



2. We expect that the area, 𝐴, under the trajectory of the ball is a function of 𝑣, 𝑔, and
𝜃. In a dimensional analysis we write this as ‘product of powers’:

𝐴 = 𝑣𝑎 ⋅ 𝑔𝑏 ⋅ 𝜃𝑐 (2.140)

and we make this expression dimensional correct. (Note: we don’t mean that the final
outcome of a full analysis is a product of powers, it can be any function but the units
should be related in the right way and that is what this ‘trick’ with powers ensures.)

The area has units m2, velocity m/s, g m/s2 and 𝜃 is dimensionless (radians don’t count
as a dimension or unit). Thus:

𝑚 : 2 = 𝑎 + 𝑏
𝑠 : 0 = −𝑎 − 2𝑏 (2.141)

This yields: 𝑎 = 4, 𝑏 = −2. Thus on dimensional grounds we may expect: 𝐴 ∼ 𝑣4

𝑔2 .

3. In the x-direction: no forces, hence 𝑚𝑣𝑥
𝑑𝑡 = 0 → 𝑥(𝑡) = 𝑣 cos 𝜃𝑡

In the y-direction: 𝑚𝑑𝑣𝑦
𝑑𝑡 = −𝑚𝑔 → 𝑦(𝑡) = 𝑣 sin 𝜃𝑡 − 1

2𝑔𝑡2. Where we have used the
initial conditions: 𝑥(𝑜) = 0, 𝑦(0) = 0, 𝑣𝑥(0) = 𝑣 cos 𝜃, 𝑣𝑦(0) = 𝑣 sin 𝜃

4. Total time in the air: 𝑣𝑦(𝑡∗) = 0 → 𝑡∗ = 2𝑣
𝑔 sin 𝜃

5+6. Evaluate the area under the trajectory:

𝐴 = ∫
𝑥𝑚𝑎𝑥

0
𝑦𝑑𝑥

= ∫
𝑡∗

0
(𝑣 sin 𝜃𝑡 − 1

2
𝑔𝑡2)𝑣 cos 𝜃𝑑𝑡

= 𝑣2 sin 𝜃 cos 𝜃1
2
(𝑡∗)2 − /𝑓𝑟𝑎𝑐16𝑔𝑣 cos 𝜃(𝑡∗)3

= 2
3

𝑣4

𝑔2 cos 𝜃 sin3 𝜃

(2.142)

7. We maximize the function 𝑓(𝜃) = cos 𝜃 sin3 𝜃:

𝑑𝑓
𝑑𝜃

= sin2 𝜃(− sin2 𝜃 + 3 cos2 𝜃) (2.143)

𝑑𝑓
𝑑𝜃

= 0 → sin 𝜃 = 0𝑜𝑟 sin2 𝜃 = 3 cos2 𝜃 (2.144)

The first solution give a minimum for the area (𝐴 = 0). So we need the second solution:

sin2 𝜃
cos2 𝜃

= tan2 𝜃 = 3 → tan 𝜃 =
√

3 → 𝜃 = 𝜋
3

(2.145)

Solution to Exercise 10: Two attracting particles

Interpret

We start with a sketch.



This is a 1-dimensional problem. We will use 𝑟 as the coordinate. Moreover, it is a
problem involving two particles, that both can move. This makes it more difficult
than 1-dimensional cases with only one particle.

Develop

We have to set up two equations of motion, one for particle 1 with mass 𝑚 and
position 𝑟1 and one for particle 2 with mass 𝑚/4 and position 𝑟2. When doing so, we
should realize that the mutual force obeys Newton’s third law: 𝐹12 = −𝐹21

𝑚𝑑𝑣1
𝑑𝑡

= 𝑎(𝑟2 − 𝑟1)

𝑚
4

𝑑𝑣2
𝑑𝑡

= −𝑎(𝑟2 − 𝑟1)
(2.146)

We see that the two equations are coupled: we can’t solve one without information
from the other.

Evaluate

So, how do we proceed? First, let’s think about the question. We are not asked to
solve the equation of motion and find the trajectory. What we need to find is the
position of the collision.

From the two equation of motion we can find important information about the
velocities of both particles. Just add to two equations:

𝑚𝑑𝑣1
𝑑𝑡

+ 𝑚
4

𝑑𝑣2
𝑑𝑡

= 0 → 𝑑𝑣1
𝑑𝑡

= −1
4

𝑑𝑣2
𝑑𝑡

(2.147)

Since both particles start rest, we find from the last equation: 𝑣1 = −1
4𝑣2 at any time.

Thus particle 2 will travel 4 times a distance than particle 1 in the same time interval.
Consequently: if particle 1 has moved 1cm, particle 2 has moved 4cm. Thus the
particles (originally separated by 5cm) will collide at 𝑟 = 1cm.

Assess

It makes sense that the heavy particle has traveled less than the light one: they both
feel at any moment the same force (apart from a sign). The light particle will
accelerate faster than the heavy one. Moreover, they should collide somewhere on
the line element originally separating them as they are attracted to each other.

We found both these elements in our solution.

2.2.5.3 Exercises set 2
interactive(children=(FloatSlider(value=0.7853981633974483,
description='theta', max=1.5707963267948966, min=0…

<function __main__.update(theta, F_girl)>

interactive(children=(FloatSlider(value=0.7853981633974483,
description='theta', max=1.5707963267948966, step=…

<function __main__.update(theta, mu)>

interactive(children=(IntSlider(value=1, description='force_num', max=3,
min=1), Output()), _dom_classes=('wid…

<function __main__.update(force_num)>



Exercise 2.56: Who is strongest? 🌶

Who is strongest? Two strong boys try to keep a rope straight by each pulling hard at
one end. A not so strong third person is pulling in the middle of the rope, but at an angle
of 90° to the rope. The two strong boys have the task to keep the deviation of the rope to
a small value, set by you.

How does the force and the angle depends on the force exerted by the girl?

Figure 2.57:  Picture taken from Show the Physics

max=15.0, min=1.5), IntSlider(value=1, d…

Exercise 2.58: Dropping a stone from a church tower 🌶

You drop a stone from a height of 50m the tower of the church. Calculate the velocity of
the stone when it hits the ground (ignore friction). In the video you will see on the left a
quick and dirty solution, NOT using IDEA. The right hand side uses IDEA and Newton’s
2𝑛𝑑 law.

Figure 2.59:  The worked out exercise

Exercise 2.60: Sliding down a slope 🌶

Two point particles slide down a slope: one feels friction the other doesn’t. Can you
analyse the situation and understand the graphs?

https://interactivetextbooks.tudelft.nl/showthephysics/


Exercise 2.61: 🌶

Below are three forces and their resultant (𝑣, 𝑡)- and (𝑠, 𝑡)-diagrams. What kind of forces
are acting?

Exercise 2.62: 🌶

A mass 𝑚 = 1kg (the red one in the drawing) is attached to a massless string. The string
can move freely over a massless pulley. At the other end of the string a variable mass 𝑀
(the grey one) is hanging. At 𝑡 = 0 mass 𝑚 is released, while the string is stretched to its
full length.

The graph on the right side of the screen shows the velocity of 𝑚 as a function of time.

• ‘Play’ with the acceleration and mass 𝑀 , predict every time first what will happen
to the motion.

• Describe the motion of 𝑚 and 𝑀 .
• Write down Newton’s equation of motion for 𝑚 and for 𝑀 .

<function __main__.run_animation(g=9.81, M=1)>

Exercise 2.63: 🌶 🌶 🌶

A point particle (mass 𝑚) is from position 𝑧 = 0 shot with a velocity 𝑣0 straight upwards
into the air. On this particle only gravity acts, i.e. friction with the air can be ignored.
The acceleration of gravity, 𝑔, may be taken as a constant.

The following questions should be answered.

• What is the maximum height that the particle reaches?
• How long doe it take to reach that highest point?

Solve this exercise using IDEA.

• Sketch the situation and draw the relevant quantities.
• Reason that this exercise can be solved using ⃗𝐹 = 𝑚 ⃗𝑎 (or 𝑑 ⃗𝑝/𝑑𝑡 = ⃗𝐹 ).
• Formulate the equation of motion (N2) for m.
• Classify what kind of mathematical equation this is and provide initial or boundary

conditions that are needed to solve the equation.
• Solve the equation of motion and answer the two questions.
• Check your math and the result for dimensional correctness. Inspect the limit:

𝐹𝑧𝑤 → 0.



Exercise 2.64: Acceleration of Gravity 🌶 🌶

• Find an object that you can safely drop from some height.
• Drop the object from any (or several heights) and measure using a stop watch or

you mobile the time from dropping to hitting the ground.
• Measure the dropping height.

Find from these data the value of gravity’s acceleration constant.

Don’t forget to first make an analysis of this experiment in terms of a physical model
and make clear what your assumptions are.

Tip

Think about the effect of air resistance: is dropping from a small, a medium or a high
height best? Any arguments?

Exercise 2.65: Use numerical analysis to assess influence of air friction 🌶 🌶 🌶

If you want to learn also how to use numerical methods …

Try using an air drag force: 𝐹𝑑𝑟𝑎𝑔 = −𝐴⟂𝐶𝐷
1
2𝜌𝑎𝑖𝑟𝑣2. With 𝐴⟂ the cross-sectional area

of your object perpendicular to the velocity vector and 𝐶𝐷 ≈ 1 the drag coefficient (in
real life it is actually a function of the velocity). 𝜌𝑎𝑖𝑟 is the density of air which is about
1.2𝑘𝑔/𝑚3.

Write a computer program (e.g. in python) that calculates the motion of your object. See
Solution with Python how you could do that.

Exercise 2.66: Forces on your bike 🌶

Figure 2.67:  Riding a bicycle. Adapted from InjuryMap, from Wikimedia Commons,
licensed under CC BY-SA 4.0.

On a bicycle you will have to apply a force to the pedals to move forward, right? What
force actually moves you forward, where is it located and who/what is providing that
force?

• Make sketch and draw the relevant force. Give the force that actually propels you a
different color.

• Think for a minute about the nature of this force: are you surprised?

N.B. Consider while thinking about this problem: what would happen if you were biking
on an extremely slippery floor?

/NumericalFallingPart-36fa990f43626acb8e7ef77247e6ae20.pdf


Solution 2.68: Solution to Exercise 9

When you push with your foot on the pedal, that force is transferred to the chain of your
bike. That chain exerts a force on the gear of your bike’s rear wheel, trying to get it to
rotate. Your wheel touches the ground and, because of the force on the gear, the wheel
exerts a force in the ground, trying to push the ground backwards. Due to action=-
reaction, the ground exerts a forward force on your wheel. So actually, biking means
“making the ground push you forward”!

Exercise 2.70: Getting off the boat 🌶

You are stepping from a boat onto the shore. Use Newton’s laws to describe why you
will end up in the water.

N.B. A calculation is not required, but focus on the physics and describe in words why
you didn’t make it to the jetty.



Solution 2.72: Solution to Exercise 10

When you try to step on the jetty, a force needs to be exerted on you, otherwise you
can’t move forward. The way you achieve that: you push with your back foot on the
boat. And as a result of Newton 3, the boat will push back, but the force from the boat on
you is forward directed. That is exactly what you need!

However, while you push, the boat will move backwards due to the force you exert on it.
Consequently, your point of contact with the boat shifts away from the jetty. Either you
let the boat go and no force from the boat is acting on you. Now gravity will do its work
and if your forward velocity is not sufficient, you will not reach the jetty. Or your foot
will try to follow the boat and that requires a force to the wrong direction acting on you.

Pushing harder seems an option: your forward velocity might increase more. However,
the boat will also be pushed harder and moves quicker away from you. Consequently,
the time interval of contact with the boat decreases. Thus, with Newton 2: dp = Fdt your
increase in velocity due to the larger force might be compensated by a smaller duration
that the force can do so. And you may still end up in the water.

Exercise 2.73: Newton’s Laws 🌶

Figure 2.74:  align: center

Stamp designs © Royal Mail Group Ltd[^1].

Close this book (or don’t peak at it ;-)) and write down Newton’s laws. Explain in words
the meaning of each of the laws. Try to come up with several, different ways of
describing what is in these equations.



2.3 Work and Energy
Updated: 18 jan 2026

2.3.1 Work
Work and energy are two important concepts. Work is the transfer of energy that occurs
when a force is applied to an object and causes displacement in the direction of that force,
calculated as ‘force times path’. However, we need a formal definition:

if a point particle moves from ⃗𝑟 to ⃗𝑟 + 𝑑 ⃗𝑟 and during this interval a force ⃗𝐹  acts on the particle,
then this force has performed an amount of work equal to:

𝑑𝑊 = ⃗𝐹 ⋅ 𝑑 ⃗𝑟 (2.148)

Figure 2.75:  Path of a particle.

Note that this an inner product between two vectors, resulting in a scalar . In other words,
work is a number, not a vector. It has no direction. That is one of the advantages over force.

𝑑𝑊 = ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = 𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 + 𝐹𝑧𝑑𝑧 (2.149)

Work done on 𝑚 by 𝐹  during motion from 1 to 2 over a prescribed trajectory:

𝑊12 = ∫
2

1

⃗𝐹 ⋅ 𝑑 ⃗𝑟 (2.150)

Keep in mind: in general the work depends on the starting point 1, the end point 2 and on
the trajectory. Different trajectories from 1 to 2 may lead to different amounts of work.

Tip

See also the chapter in the linear algebra book on the inner product

2.3.2 Kinetic Energy
Kinetic energy is defined and derived using the definition of work and Newton’s 2𝑛𝑑 Law.

The following holds: if work is done on a particle, then its kinetic energy must change. And
vice versa: if the kinetic energy of an object changes, then work must have been done on
that particle. The following derivation shows this.

https://interactivetextbooks.tudelft.nl/linear-algebra/Chapter1/Inner\_Product.html


𝑊12 = ∫
2

1

⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∫
2

1

⃗𝐹 ⋅ 𝑑 ⃗𝑟
𝑑𝑡

𝑑𝑡 = ∫
2

1

⃗𝐹 ⋅ ⃗𝑣𝑑𝑡

= ∫
2

1
𝑚𝑑 ⃗𝑣

𝑑𝑡
⋅ ⃗𝑣𝑑𝑡 = 𝑚 ∫

2

1
⃗𝑣 ⋅ 𝑑 ⃗𝑣 = 𝑚[1

2 ⃗𝑣2]
2

1

= 1
2
𝑚 ⃗𝑣2

2 − 1
2
𝑚 ⃗𝑣2

1

(2.151)

It is from the above that we indicate 12𝑚 ⃗𝑣2 as kinetic energy. It is important to realize that
the concept of kinetic energy does not bring anything that is not contained in N2 to the
table. But it does give a new perspective: kinetic energy can only be gained or lost if a force
performs work on the particle. And vice versa: if a force performs work on a particle, the
particle will change its kinetic energy.

Obviously, if more than one force acts, the net work done on the particle determines the
change in kinetic energy. It is perfectly possible that force 1 adds an amount 𝑊  to the
particle, whereas at the same time force 2 will take out an amount −𝑊 . This is the case for
a particle that moves under the influence of two forces that cancel each other: ⃗𝐹1 = − ⃗𝐹2.
From Newton 2, we immediately infer that if the two forces cancel each other, then the
particle will move with a constant velocity. Hence, its kinetic energy stays constant. This is
completely in line with the fact that in this case the net work done on the particle is zero:

𝑊1 + 𝑊2 = ∫
2

1

⃗𝐹1 ⋅ 𝑑 ⃗𝑟 + ∫
2

1

⃗𝐹2 ⋅ 𝑑 ⃗𝑟 = ∫
2

1

⃗𝐹1 ⋅ 𝑑 ⃗𝑟 − ∫
2

1

⃗𝐹1 ⋅ 𝑑 ⃗𝑟 = 0 (2.152)

2.3.3 Worked Examples

Exercise 1: Carrying a weight

You carry a heavy backpack 𝑚 = 20 kg from Delft to Rotterdam (20 km). What is the
work that you have done against the gravitational force?

Solution to Exercise 1: Carrying a weight

The answer is, of course, zero! That is because the path (from Delft to Rotterdam) is
perpendicular to the gravitational force. Therefore the inner product 𝐹𝑔 ⋅ 𝑑 ⃗𝑟 = 0 over the
whole way. Let us look at it more formally, this will help us when things get more
complicated later.

The force is 𝐹𝑔(𝑥, 𝑦, 𝑧) = (0, 0, −𝑚𝑔) = −𝑚𝑔𝑧 and we choose our coordinate system
such that the path be along the 𝑥-axis, the 𝑦-coordinate is zero and we the backpack is at
height 𝑧 = 1 m.

𝑊𝑔 = ∫
𝑅𝑜𝑡𝑡

𝐷𝑒𝑙𝑓𝑡
𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 + 𝐹𝑧𝑑𝑧 = ∫ 𝐹𝑥𝑑𝑥 |𝑦=0,𝑧=1 = ∫ 0 𝑑𝑥 = 0 (2.153)

So gravity has not performed work on your backpack. Similarly, you have exercised a
force ⃗𝐹𝑁  on the backpack. As the backpack doesn’t change its vertical coordinate, we
know ⃗𝐹𝑁 + ⃗𝐹𝑔 = 0. And immediately, we see:

𝑊𝑁 = ∫
𝑅𝑜𝑡𝑡

𝐷𝑒𝑙𝑓𝑡
𝐹𝑁𝑥𝑑𝑥 + 𝐹𝑁𝑦𝑑𝑦 + 𝐹𝑁𝑧𝑑𝑧 = ∫ 𝐹𝑥𝑑𝑥 |𝑦=0,𝑧=1 = ∫ 0 𝑑𝑥 = 0(2.154)

You didn’t perform any work either. This may feel strange or even wrong. After all, you
will probably be pretty tired after the walk. However, that is due to the internal working
of our muscles and body. In order to sustain the force ⃗𝐹𝑁  humans do use energy: work is
done in their muscles. But from a physics point of view: no work is done on the
backpack.



Exercise 2: Compressing a spring⁵

You’re compressing an uncompressed spring with spring constant 𝑘 over a distance 𝑥.
How much work do you need to do?

Solution to Exercise 2: Compressing a spring

𝑊 = ∫
𝑥2

𝑥1

𝐹d𝑥 = ∫
𝑥

0
𝑘𝑥d𝑥 = 1

2
𝑘𝑥2 (2.155)

Exercise 3: Work in a force field

Now we consider a force field ⃗𝐹 (𝑥, 𝑦) = (−𝑦, 𝑥2) = −𝑦𝑥 + 𝑥2𝑦. We compute the work
done over a path from the origin (0, 0) to (1, 0) and then to (1, 1) first along the 𝑥-axis
and then parallel to the 𝑦-axis.

Solution to Exercise 3: Work in a force field

We can split up the integral in these two parts as the direction in both parts is constant,
therefore the inner product can be separated out.

𝑊 =

=

=

=

∫(1,0)
(0,0)

⃗𝐹 ⋅ 𝑑 ⃗𝑟 + ∫(1,1)
(1,0)

⃗𝐹 ⋅ 𝑑 ⃗𝑟

∫(1,0)
(0,0)

𝐹𝑥𝑑𝑥 |𝑦=0 + ∫(1,1)
(1,0)

𝐹𝑦𝑑𝑦 |𝑥=1

∫(𝑥=1)
(𝑥=0)

−𝑦 𝑑𝑥 |𝑦=0 + ∫(𝑦=1)
(𝑦=0)

𝑥2 𝑑𝑦 |𝑥=1

−𝑦𝑥 |𝑥=1
𝑥=0 |𝑦=0 + 𝑥2𝑦 |𝑦=1

𝑦=0 |𝑥=1 = 1

(2.156)

Try to integrate the force field yourself along a different path (0, 0) → (0, 1) → (1, 1) to
the same end point.

𝑊 =

=
=

∫𝑦=1
𝑦=0

𝐹𝑦 𝑑𝑦 |𝑥=0 + ∫𝑥=1
𝑥=0

𝐹𝑥 𝑑𝑥 |𝑦=1

∫𝑦=1
𝑦=0

𝑥2 𝑑𝑦 |𝑥=0 + ∫𝑥=1
𝑥=0

−𝑦 𝑑𝑥 |𝑦=1

−1 + 0 = −1

(2.157)

The work done is not the same over this path. This is already obvious from the graph
showing the path and the force field: the second path clearly moves against the force,
where the first is moving with direction of the force.

Reminder of path/line integral from Analysis

⁵Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)



As long as the path can be split along coordinate axis the separation above is a good
recipe. If that is not the case, then we need to turn back to the way how things have
been introduced in the Analysis class. We need to make a 1D parameterization of the
path.

Line integral of a vector valued function ⃗𝐹 (𝑥, 𝑦, 𝑧) : ℝ3 → ℝ3 over a curve cal 𝐶 is
given as

∫
cal 𝐶

⃗𝐹 (𝑥, 𝑦, 𝑧) ⋅ 𝑑 ⃗𝑟 = ∫
𝑏

𝑎

⃗𝐹 ( ⃗𝑟(𝜏)) ⋅ 𝑑 ⃗𝑟(𝜏)
𝑑𝜏

𝑑𝜏 (2.158)

We integrate in the definition of the work from point 1 to 2 over an implicitly given
path. To compute this actually, you need to parameterize the path by ⃗𝑟(𝜏) =
(𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏)). The integration variable 𝜏  tells you where you are on the path, 𝜏 ∈
[𝑎, 𝑏] ∈ ℝ. The derivative of ⃗𝑟 with respect to 𝜏  gives the tangent vector to the curve, the
“speed” of walking along the curve. In the analysis class you used ⃗𝑣(𝜏) ≡ 𝑑 ⃗𝑟(𝜏)

𝑑𝜏  for the
speed. The value of the line integral is independent of the chosen parameterization.
However, it changes sign when reversing the integration boundaries.

Example: Another path

Now we integrate from (0, 0) → (1, 1) but along the diagonal. A parameterization of this
path is ⃗𝑟(𝜏) = (0, 0) + (1, 1)𝜏 = (𝜏, 𝜏), 𝜏 ∈ [0, 1]. The derivative is 𝑑 ⃗𝑟(𝜏)

𝑑𝜏 = (1, 1).
Therefore we can write the work of ⃗𝐹 (𝑥, 𝑦) = −𝑦𝑥 + 𝑥2𝑦 along the diagonal as

∫
1

0

⃗𝐹 (𝜏 , 𝜏) ⋅ (1, 1) 𝑑𝜏 = ∫
1

0
(−𝜏, 𝜏2) ⋅ (1, 1) 𝑑𝜏 =

∫
1

0
(−𝜏 + 𝜏2) 𝑑𝜏 = −1

6

(2.159)

Integration of the same force ⃗𝐹 (𝑥, 𝑦) = −𝑦𝑥 + 𝑥2𝑦 from (0, 0) → (1, 1) but along a
normal parabola. A parameterization of the path is ⃗𝑟(𝜏) = (0, 0) + (𝜏, 𝜏2), 𝜏 ∈ [0, 1] and
the derivative is 𝑑 ⃗𝑟

𝑑𝜏 = (1, 2𝜏). The work then is

∫
1

0

⃗𝐹 (𝜏, 𝜏2) ⋅ (1, 2𝜏) 𝑑𝜏 =

∫
1

0
(−𝜏2, 𝜏2) ⋅ (1, 2𝜏) 𝑑𝜏 =

∫
1

0
(−𝜏2 + 2𝜏3) 𝑑𝜏 = 1

6

(2.160)

2.3.4 Gravitational potential energy
Let’s consider an object close to the surface of any planet, where the acceleration due to
gravity can be described by 𝐹𝑔 = −𝑚𝑔. Raising the object to a height 𝐻  requires us to do
work: we will have to apply a force 𝐹 = +𝑚𝑔 to the object to lift it to position 𝐻 . Thus,
with two forces acting - each doing work on the object we get:

𝑊𝑔 = ∫
𝐻

0
𝐹𝑔𝑑𝑥 = ∫

𝐻

0
−𝑚𝑔𝑑𝑥 = −𝑚𝑔𝐻

𝑊+ = ∫
𝐻

0
−𝐹𝑔𝑑𝑥 = ∫

𝐻

0
𝑚𝑔𝑑𝑥 = 𝑚𝑔𝐻

(2.161)

The net effect is of course 𝑊𝑛𝑒𝑡 = 0 as the object started without kinetic energy and ends
without kinetic energy, thus we knew in advance 0 = Δ𝐸𝑘𝑖𝑛 = 𝑊𝑔 + 𝑊+



We can also take a slightly different view on this. Suppose we only concentrate on the work
done by gravity: 𝑊𝑔 = −𝑚𝑔𝐻 . Note that there is a minus sign, the gravitational force
works in the opposite direction of the movement of the object. As energy is a conservative
quantity, someone or something has supplied the object with some ‘gained’ energy. We call
this potential energy, more particular in this case gravitational potential energy.

Why is it called ‘potential’? When the object is released from that height 𝐻 , this
gravitational potential energy is converted to kinetic energy. The gravitational force does
work on the object:

𝑊 = ∫
0

𝐻
𝐹𝑑𝑥 = ∫

0

𝐻
𝑚𝑔𝑑𝑥 = 𝑚𝑔𝐻 = Δ𝐸𝑘𝑖𝑛 (2.162)

From this, it follow that the object will reach a velocity of 𝑣 =
√

2𝑔𝐻 . This is an example of
a situation where an object looses potential energy and gains kinetic energy.

Exercise 4: Potential & kinetic energy

Proof that the velocity of an object released from a height 𝐻  will reach the velocity 𝑣 =√
2𝑔𝐻 .

Note

Exercise 5: A point particle of mass 𝑚 = 1kg is at 𝑡 = 0 at position 𝑥 = 0. It has initial
velocity 𝑣0. From 𝑡 = 0 to 𝑡𝑠𝑡𝑜𝑝 = 2s it is under the influence of a constant force 𝐹 . This
is a 1D problem.

The top graph show the position of the particle. The bottom graph shows the Work done
on the particle by the force and the kinetic energy of the particle.

Analyse this situation and calculate the work done by the force at any time. Is the work
done in this case always sufficient to account for the change in kinetic energy? What
does it mean if the work is positive or negative?

Note

Exercise 6: Use the Python app below, and answer the following questions:

• does the acceleration double when the mass of the falling box doubles?
• the position time diagram is made using kinematics, how would the code look like

when based on energy conservation?
• how would you include friction in the code?

interactive(children=(FloatSlider(value=9.81, description='g (m/s²)',
max=15.0, min=1.5), IntSlider(value=1, d…

<function __main__.run_animation(g=9.81, M=1)>

Exercise 2.77: 

Look at the following roller coaster app.

Change the various graph settings (what is on the x/y axis). Change the starting position
of the ball, and try to change the path.

Can you make sense of the motion and the graphs?

https://www.myphysicslab.com/roller/roller-single-en.html


2.3.5 Conservative force
As we saw, work done on 𝑚 by 𝐹  during motion from 1 to 2 over a prescribed trajectory, is
defined as:

𝑊12 = ∫
2

1

⃗𝐹 ⋅ 𝑑 ⃗𝑟 (2.163)

In general, the amount of work depends on the path followed. That is, the work done when
going from ⃗𝑟1 to ⃗𝑟2 over the red path in the figure below, will be different when going from
⃗𝑟1 to ⃗𝑟2 over the blue path. Work depends on the specific trajectory followed.

Figure 2.78:  Two different paths.

However, there is a certain class of forces for which the path does not matter, only the start
and end point do. These forces are called conservative forces. As a consequence, the work
done by a conservative force over a closed path, i.e start and end are the same, is always
zero. No matter which closed path is taken.

𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑓𝑜𝑟𝑐𝑒 ⇔ ∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = 0𝑓𝑜𝑟𝐴𝐿𝐿𝑐𝑙𝑜𝑠𝑒𝑑𝑝𝑎𝑡ℎ𝑠 (2.164)

2.3.5.1 Stokes’ Theorem
It was George Stokes who proved an important theorem, that we will use to turn the
concept of conservative forces into a new and important concept.



Figure 2.79:  Sir George Stokes (1819-1903). From Wikimedia Commons, public domain.

His theorem reads as:

∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∬ ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ (2.165)

In words: the integral of the force over a closed path equals the surface integral of the curl
of that force. The surface being ‘cut out’ by the close path. The term ∇⃗ × ⃗𝐹  is called the curl
of 𝐹 :, which is a vector. The meaning of the curl and some words on the theorem are given
below.

Intermezzo: intuitive proof of Stokes’ Theorem

Consider a closed curve Γ in the 𝑥𝑦-plane. We would like to calculate the work done
when going around this curve. In other words: what is ∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 if we move along this
curve?

We can visualize what we need to do: we cut the curve in small part; compute ⃗𝐹 ⋅ 𝑑 ⃗𝑟 for
each part (i.e. the red, green, blue, etc. in Figure 5 and sum these to get the total along
the curve. If we make the parts infinitesimally small, we go from a (Riemann) sum to an
integral.

https://commons.wikimedia.org/wiki/File:Ggstokes.jpg


Figure 2.80:  Closed path on a grid.

However, we are going to compute much more: take a look at Figure 5. We have put a
grid in the 𝑥𝑦-plane over a closed curve Γ. Hence, the interior of our curve is full of
squares. We are not only computing the parts along the curve, but also along the sides of
alle curves. This will sound like way too much work, but we will see that it actually is a
very good idea.

See Figure 5: we calculate ∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 counter clockwise for the green square. Than we have
at least the green part of our ∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 done in the right direction. Hence, we compute
∫ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 along the right side of the green square. We do that from bottom to top as we go
counter clockwise along the green square. Let’s call that ∫

𝑔
⃗𝐹 ⋅ 𝑑 ⃗𝑟.

Then we move to the blue square and repeat in counter clockwise direction our
calculation. But this means that we compute along the left side of blue the square from
top to bottom. We will call this ∫

𝑏
⃗𝐹 ⋅ 𝑑 ⃗𝑟.

Next, we will add all contributions. Thus we get ∫
𝑔

⃗𝐹 ⋅ 𝑑 ⃗𝑟 + ∫
𝑏

⃗𝐹 ⋅ 𝑑 ⃗𝑟. But these two
cancel each other as they are exactly the same but done in opposite directions. Thus if
we use that ∫2

1
𝑓𝑑𝑥 = − ∫1

2
𝑓𝑑𝑥 for any integration, it becomes obvious that ∫

𝑔
⃗𝐹 ⋅ 𝑑 ⃗𝑟 +

∫
𝑏

⃗𝐹 ⋅ 𝑑 ⃗𝑟 = 0.

Note that this will happen for all side of the squares that are in the interior of our curve.
Thus, the integral over all squares is exactly the integral along the curve Γ.

It seems, we do a lot of work for nothing. But there is another way of looking at the
path-integrals along the squares. If we make the square small enough, the calculation
along one square can be approximated:



∮
𝑠𝑞𝑢𝑎𝑟𝑒

⃗𝐹 ⋅ 𝑑 ⃗𝑟 ≈ 𝐹𝑥(𝑥, 𝑦)𝑑𝑥 + 𝐹𝑦(𝑥 + 𝑑𝑥, 𝑦)𝑑𝑦 − 𝐹𝑥(𝑥, 𝑦 + 𝑑𝑦)𝑑𝑥 − 𝐹𝑦(𝑥, 𝑦)𝑑𝑦

≈ 𝐹𝑥(𝑥, 𝑦) − 𝐹𝑥(𝑥, 𝑦 + 𝑑𝑦)
𝑑𝑦

𝑑𝑥𝑑𝑦 +
𝐹𝑦(𝑥 + 𝑑𝑥, 𝑦) − 𝐹𝑦(𝑥, 𝑦)

𝑑𝑥
𝑑𝑥𝑑𝑦

≈ (
𝜕𝐹𝑦

𝜕𝑥
− 𝜕𝐹𝑥

𝜕𝑦
)𝑑𝑥𝑑𝑦

(2.166)

The results get more accurate the smaller we make the square.

If we now sum up all squares and make these squares infinitesimally small, the sum
becomes an integral, but now an integral over the surface enclosed by the curve:

∮
Γ

⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∬(
𝜕𝐹𝑦

𝜕𝑥
− 𝜕𝐹𝑥

𝜕𝑦
)𝑑𝑥𝑑𝑦 (2.167)

The right hand side of the above equation is a surface integral of the ‘vector’ 𝜕𝐹𝑦
𝜕𝑥 − 𝜕𝐹𝑥

𝜕𝑦 .
Obviously, we did not provide a rigorous proof, but only an intuitive one. For a
mathematical proof, see your calculus classes.

Moreover, we only worked in the 𝑥𝑦-plane. If we would extend our reasoning to a closed
curve in 3 dimensions, we would get Stokes theorem, which reads as:

∮
Γ

⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∬ ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ (2.168)

Here, 𝑑𝜎⃗ is a small element out of the surface. Note that it is a vector: it has size and
directions. The latter is perpendicular to the surface element itself. Furthermore, we have
the vector ∇⃗ × ⃗𝐹 . This is the cross-product of the nabla-operator and our vector field ⃗𝐹 .
The nabla operator is a strange kind of vector. Its components are: partial differentiation.
In a Cartesian coordinate system this can be written as:

∇⃗ ≡ 𝜕
𝜕𝑥

𝑥 + 𝜕
𝜕𝑦

𝑦 + 𝜕
𝜕𝑧

𝑧 (2.169)

or if you prefer a column notation:

∇⃗ ≡

(
((
((

𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧)

))
)) (2.170)

The curl of 𝐹  can be found from e.g.

∇⃗ × ⃗𝐹 =

|
|
|
| 𝑥

𝜕
𝜕𝑥
𝐹𝑥

𝑦
𝜕
𝜕𝑦
𝐹𝑦

𝑧
𝜕
𝜕𝑧
𝐹𝑧|

|
|
|
= (𝜕𝐹𝑧

𝜕𝑦
−

𝜕𝐹𝑦

𝜕𝑧
)𝑥 + (𝜕𝐹𝑥

𝜕𝑧
− 𝜕𝐹𝑧

𝜕𝑥
)𝑦 + (

𝜕𝐹𝑦

𝜕𝑥
− 𝜕𝐹𝑥

𝜕𝑦
)𝑧(2.171)

Note of warning: do be careful with the nabla-operator. It is not a standard vector. For
instance, ordinary vectors have the property ⃗𝑎 ⋅ ⃗𝑏 = ⃗𝑏 ⋅ ⃗𝑎. This does not hold for the
nabla-operator.

Second note of warning: the representation of the nabla-operator does change quite a bit
when using other coordinate systems like cylindrical or spherical. For instance, in

cylindrical coordinates it is not equal to 
(
((

𝜕
𝜕𝑟
𝜕

𝜕𝜙
𝜕

𝜕𝑧)
)). This can be easily seen as both 𝑟, 𝑧 have

units length, i.e. meters, but 𝜙 has no units.



Example: Work done in a vectorfield

Suppose we need to calculate the integral of the vectorfield ⃗𝐹 (𝑥, 𝑦) = 𝑦𝑥 − 𝑥𝑦 over the
closed curve formed by a square from (0, 0) to (1, 0), (1, 1), (0, 1) and back to (0, 0).

Figure 2.81:  Integrating along the unit square.

We go counter clockwise.

∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∫
1

𝑥=0
𝐹𝑥(𝑥, 𝑦 = 0)𝑑𝑥 + ∫

1

𝑦=0
𝐹𝑦(𝑥 = 1, 𝑦)𝑑𝑦 +

+ ∫
0

𝑥=1
𝐹𝑥(𝑥, 𝑦 = 1)𝑑𝑥 + ∫

0

𝑦=1
𝐹𝑦(𝑥 = 0, 𝑦)𝑑𝑦

= ∫
10

0
𝑑𝑥 + ∫

1

0
−1𝑑𝑦 + ∫

01

1
𝑑𝑥 + ∫

0

1
−0𝑑𝑥

= 0 − [𝑦]10 + [𝑥]01 − 0
= −2

(2.172)

Now we try this using Stokes’ Theorem:

∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∬ ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ (2.173)

We first calculate ∇⃗ × ⃗𝐹 :

∇⃗ × ⃗𝐹 =

|
|
|
| 𝑥

𝜕
𝜕𝑥
𝐹𝑥

𝑦
𝜕
𝜕𝑦
𝐹𝑦

𝑧
𝜕
𝜕𝑧
𝐹𝑧|

|
|
|
=

|
|
|
| 𝑥

𝜕
𝜕𝑥
𝑦

𝑦
𝜕
𝜕𝑦
−𝑥

𝑧
𝜕
𝜕𝑧
0 |

|
|
|
= (𝜕(−𝑥)

𝜕𝑥
− 𝜕(𝑦)

𝜕𝑦
)𝑧 = −2𝑧 (2.174)

Thus, in this example ∇⃗ × ⃗𝐹  has only a 𝑧-component.

An elementary surface element of the square is: 𝑑𝜎⃗ = 𝑑𝑥𝑑𝑦𝑧. This also has only a 𝑧-
component. Note that it points in the positive 𝑧-direction. This is a consequence of the
counter clockwise direction that we use to go along the square.



According to Stokes Theorem, we this find:

∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 = ∬ ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ = ∫
1

𝑥=0
∫

1

𝑦=0
(−2)𝑑𝑥𝑑𝑦 = −2 (2.175)

Indeed, we find the same outcome.

2.3.5.2 Conservative force and ∇⃗ × ⃗𝐹
For a conservative force the integral over the closed path is zero for any closed path.
Consequently, ∇⃗ × ⃗𝐹 = 0 everywhere. How do we know this? Suppose ∇⃗ × ⃗𝐹 ≠ 0 at some
point in space. Then, since we deal with continuous differentiable vector fields, in the close
vicinity of this point, it must also be non-zero. Without loss of generality, we can assume
that in that region ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ > 0. Next, we draw a closed curve around this point, in this
region. We now calculate the ∮ ⃗𝐹 ⋅ 𝑑 ⃗𝑟 along this curve. That is, we invoke Stokes Theorem.
But we know that ∇⃗ × ⃗𝐹 ⋅ 𝑑𝜎⃗ > 0 on the surface formed by the closed curve. Consequently,
the outcome of the surface integral is non-zero. But that is a contradiction as we started
with a conservative force and thus the integral should have been zero.
The only way out, is that ∇⃗ × ⃗𝐹 = 0 everywhere.

Thus we have:

𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑓𝑜𝑟𝑐𝑒 ⇔ ∇⃗ × ⃗𝐹 = 0𝑒𝑣𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒 (2.176)

2.3.6 Potential Energy
This function 𝑉  is called the potential energy or the potential for short and has a direct
connection to the work. A direct consequence of the above is:

if ∇⃗ × ⃗𝐹 = 0 everywhere, a function 𝑉 ( ⃗𝑟) exists such that ⃗𝐹 = −∇⃗𝑉

𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑓𝑜𝑟𝑐𝑒 ⇔ ∇⃗ × ⃗𝐹 = 0𝑒𝑣𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒
⇕

⃗𝐹 = −∇⃗𝑉 ⇔ 𝑉 ( ⃗𝑟) = − ∫
𝑟𝑒𝑓

⃗𝐹 ⋅ 𝑑 ⃗𝑟
(2.177)

where in the last integral, the lower limit is taken from some, self picked, reference point.
The upper limit is the position ⃗𝑟.

Next to its direct connection to work, the potential is also connected to kinetic energy.

𝐸𝑘𝑖𝑛,2 − 𝐸𝑘𝑖𝑛,1 = 𝑊12 = ∫
2

1

⃗𝐹 ⋅ 𝑑 ⃗𝑟 = 𝑉 ( ⃗𝑟2) − 𝑉 ( ⃗𝑟1) (2.178)

or rewritten:

𝐸𝑘𝑖𝑛,1 + 𝑉 ( ⃗𝑟1) = 𝐸𝑘𝑖𝑛,2 + 𝑉 ( ⃗𝑟2) (2.179)

In words: for a conservative force, the sum of kinetic and potential energy stays constant.

2.3.6.1 Energy versus Newton’s Second Law
We, starting from Newton’s Laws, arrived at an energy formulation for physical problems.
Question: can we also go back? That is: suppose we would start with formulating the energy
rule for a physical problem, can we then back out the equation of motion?
Answer: yes, we can!

It goes as follows. Take a system that can be completely described by its kinetic plus
potential energy. Then: take the time-derivative and simplify, we will do it for a 1-
dimensional case first.



1
2
𝑚𝑣2 + 𝑉 (𝑥) = 𝐸0 ⇒

𝑑
𝑑𝑡

[1
2
𝑚𝑣2 + 𝑉 (𝑥)] = 𝑑𝐸0

𝑑𝑡
= 0 ⇒

𝑚𝑣 ̇𝑣 + 𝑑𝑉
𝑑𝑥

𝑑𝑥
𝑑𝑡⏟
=𝑣

= 0 ⇒

𝑣(𝑚 ̇𝑣 + 𝑑𝑉
𝑑𝑥

) = 0

(2.180)

The last equation must hold for all times and all circumstances. Thus, the term in brackets
must be zero.

𝑚 ̇𝑣 + 𝑑𝑉
𝑑𝑥

= 0 ⇒ 𝑚 ̈𝑥 = −𝑑𝑉
𝑑𝑥

= 𝐹 (2.181)

And we have recovered Newton’s second law.

In 3 dimensions it is the same procedure. What is a bit more complicated, is using the chain
rule. In the above 1-d case we used 𝑑𝑉

𝑑𝑡 = 𝑑𝑉 (𝑥(𝑡))
𝑑𝑡 = 𝑑𝑉

𝑑𝑥
𝑑𝑥(𝑡)

𝑑𝑡 . In 3-d this becomes:

𝑑𝑉
𝑑𝑡

= 𝑑𝑉 ( ⃗𝑟(𝑡))
𝑑𝑡

= 𝑑𝑉
𝑑 ⃗𝑟

⋅ 𝑑 ⃗𝑟(𝑡)
𝑑𝑡

= ∇⃗𝑉 ⋅ ⃗𝑣 (2.182)

Thus, if we repeat the derivation, we find:

1
2
𝑚𝑣2 + 𝑉 ( ⃗𝑟) = 𝐸0 ⇒

𝑑
𝑑𝑡

[1
2
𝑚𝑣2 + 𝑉 ( ⃗𝑟)] = 0 ⇒

𝑚 ⃗𝑣 ⋅ ̇⃗𝑣 + ∇⃗𝑉 ⋅ ⃗𝑣 = 0 ⇒
𝑣(𝑚 ⃗𝑎 + ∇⃗𝑉 ) = 0 ⇒

𝑚 ⃗𝑎 = −∇⃗𝑉 = ⃗𝐹

(2.183)

And we have recovered the 3-dimensional form of Newton’s second Law. This is a great
result. It allows us to pick what we like: formulate a problem in terms of forces and
momentum, i.e. Newton’s second law, or reason from energy considerations. It doesn’t
matter: they are equivalent. It is a matter of taste, a matter of what do you see first,
understand best, find easiest to start with. Up to you!

2.3.7 Stable and Unstable Equilibrium
A particle (or system) is in equilibrium when the sum of forces acting on it is zero. Then, it
will keep the same velocity, and we can easily find an inertial system in which the particle is
at rest, at an equilibrium position.
The equilibrium position (or more general: state) can also be found directly from the
potential energy.

Potential energy and (conservative) forces are coupled via:

⃗𝐹 = −∇⃗𝑉 (2.184)

The equilibrium positions (∑𝑖
⃗𝐹𝑖 = 0) can be found by finding the extremes of the

potential energy:

𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ⇔ ∇⃗𝑉 = 0 (2.185)

Once we find the equilibrium points, we can also quickly address their nature: is it a stable
or unstable solution? That follows directly from inspecting the characteristics of the
potential energy around the equilibrium points.



For a stable equilibrium, we require that a small push or a slight displacement will result in a
force pushing back such that the equilibrium position is restored (apart from the inertia of
the object that might cause an overshoot or oscillation).

However, an unstable equilibrium is one for which the slightest push or displacement will
result in motion away from the equilibrium position.

The second derivative of the potential can be investigated to find the type of extremum. For
1D functions that is easy, for scalar valued functions of more variables that is a bit more
complicated. Here we only look at the 1D case 𝑉 (𝑥) : ℝ → ℝ

𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 : ∇⃗𝑉 = 0 (2.186)

Luckily, the definition of potential energy is such that these rules are easy to visualize in 1D
and to remember, see Figure 7

Figure 2.82:  Stable and unstable position of a particle in a potential.

A valley is stable; a hill top is unstable.
NB: Now the choice of the minus sign in the definition of the potential is clear. Otherwise a
hill would be stable, but that does not feel natural at all.

It is also easy to visualize what will happen if we distort that particle from the equilibrium
state:

• The valley, i.e., the stable system, will make the particle move back to the lowest point.
Due to inertia, it will not stop but will continue to move. As the lowest position is one
of zero force, the particle will ‘climb’ toward the other end of the valley and start an
oscillatory motion.

• The top, i.e., the unstable point, will make the particle move away from the stable
point. The force acting on the particle is now pushing it outwards, ‘down the slope of
the hill’.

2.3.7.1 Taylor Series Expansion of the Potential
The Taylor expansion or Taylor series is a different way of writing down the value of a
function in the vicinity of a point 𝑥0. Even though the function is written down in a
different way, it is equal to 𝑓  in the vicinity of 𝑥0. It uses an infinite series of polynomial
terms with coefficients given by value of the derivative of the function at that specific point
𝑥0. The value of the terms for higher n become small, so we can approximate the function
by using only the first few terms. The more of these first terms you take, the closer your
approximation is. Mathematically, it reads for a 1D scalar function 𝑓 : ℝ → ℝ:

𝑓(𝑥) ≈ 𝑓(𝑥0) + 1
1!

𝑓′(𝑥0)(𝑥 − 𝑥0) + 1
2!

𝑓′′(𝑥0)(𝑥 − 𝑥0)
2 + 1

3!
𝑓′′′(𝑥0)(𝑥 − 𝑥0)

3 + …(2.187)

For our purpose here, it suffices to stop after the second derivative term:

𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) + 1
2
𝑓′′(𝑥0)(𝑥 − 𝑥0)

2 + 𝒪(𝑥3) (2.188)

A way of understanding why the Taylor series actually works is the following.
Imagine you have to explain to someone how a function looks around some point 𝑥0, but



you are not allowed to draw it. One way of passing on information about 𝑓(𝑥) is to start by
giving the value of 𝑓(𝑥) at the point 𝑥0:

𝑓(𝑥) ≈ 𝑓(𝑥0) (2.189)

Next, you give how the tangent at 𝑥0 is: you pass on the first derivative at 𝑥0. The other
person can now see a bit better how the function changes when moving away from 𝑥0:

𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) (2.190)

Then, you tell that the function is not a straight line but curved, and you give the second
derivative. So now the other one can see how it deviates from a straight line:

𝑓(𝑥) ≈ 𝑓(𝑥0) + 1
1!

𝑓′(𝑥0)(𝑥 − 𝑥0) + 1
2!

𝑓′′(𝑥0)(𝑥 − 𝑥0)
2 (2.191)

Note that the prefactor is placed back. But the function is not necessarily a parabola; it will
start deviating more and more as we move away from 𝑥0. Hence we need to correct that by
invoking the third derivative that tells us how fast this deviation is. And this process can
continue on and on.

Important to note: if we stay close enough to 𝑥0 the terms with the lowest order terms will
always prevail as higher powers of (𝑥 − 𝑥0) tend to zero faster than a lower powers (for
instance: 0.54 << 0.52).

This 3Blue1Brown clip explains the 1D Taylor series nicely.

Figure 2.83:  A 3blue1brown clip on Taylor series.

For scalar valued functions as our potentials 𝑉 ( ⃗𝑟) : ℝ3 → ℝ the extension of the Taylor
series is not too difficult. If we expand the function around a point

𝑉 ( ⃗𝑟) ≈ 𝑉 ( ⃗𝑟0) + ∇⃗𝑉 ( ⃗𝑟0) ⋅ ( ⃗𝑟 − ⃗𝑟0)

+1
2
( ⃗𝑟 − ⃗𝑟0) ⋅ (𝜕2𝑉 )( ⃗𝑟0) ⋅ ( ⃗𝑟 − ⃗𝑟0) + 𝒪(𝑟3)

(2.192)

The second derivative of the potential indicated by 𝜕2𝑉  is the Hessian matrix. Right now,
this all sound a bit hocus pocus. But don’t worry: you won’t need it right away in its full
glory. In the rest of your physics and math classes, this will all come back and start to make
sense.

Conceptually the extrema of the function are again the hills and valleys. The classification of
the extrema has next to hills and valleys also saddle points etc. In this course we will not
bother about these more dimensional cases, but only stick to simple ones.



Exercise 2.84: Gravity, a conservative force? 🌶

Is gravity ⃗𝐹𝑔 = 𝑚 ⃗𝑔 a conservative force? If yes, what is the corresponding potential
energy?

To find the answer:

a. Show ∇⃗ × 𝑚 ⃗𝑔 = 0
b. Find a 𝑉  that satisfies −𝑚 ⃗𝑔 = −∇⃗𝑉

Exercise 2.85: 🌶

A point particle of mass 𝑚 = 1 kg is at 𝑡 = 0 at position 𝑥 = 0. It has initial velocity 𝑣0.
From 𝑡 = 0 to 𝑡𝑠𝑡𝑜𝑝 = 2 s it is under the influence of a constant force 𝐹 . This is a 1D
problem.

The top graph shows the position of the particle. The bottom graph shows the Work
done on the particle by the force and the kinetic energy of the particle.

Analyze this situation and calculate the work done by the force at any time. Is the work
done in this case always sufficient to account for the change in kinetic energy? What
does it mean if the work is positive or negative?

2.3.8 Examples, exercises and solutions
Updated: 13 okt 2025

Exercise 2.86: 🌶

A simple model for the frictional force experienced by a body sliding over a horizontal,
smooth surface is 𝐹𝑓 = −𝜇𝐹𝑔 with 𝐹𝑔 the gravitational force on the object. The friction
force is opposite the direction of motion of the object.

• Show that this frictional force is not conservative (and, consequently, a potential
energy associated does not exist!).

Tip

Think of two different trajectories to go from point 1 to point 2 and show that the
amount of work along these trajectories is not the same.

Or: find a closed loop for which the work done by the frictional force is non-zero.

Exercise 2.87: 🌶

A force is given by: ⃗𝐹 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧

• Show that this force is conservative.
• Find the corresponding potential energy.

A second force is given by: ⃗𝐹 = 𝑦𝑥 + 𝑥𝑦 + 𝑧𝑧

• Show that this force is also conservative.
• Find the corresponding potential energy.



Exercise 2.88: 🌶

Another force is given by: ⃗𝐹 = 𝑦𝑥 − 𝑥𝑦

• Show that this force is not conservative.
• Compute the work done when moving an object over the unit circle in the xy-plane

in an anti-clockwise direction. (Hint: use Stokes theorem.)
• Discuss the meaning of your answer: is it positive or negative? And what does that

mean in terms of physics?

Exercise 2.89: 🌶

Given a potential energy 𝐸𝑝𝑜𝑡 = 𝑥𝑦.
a. Find the corresponding force (field).
b. Make a plot of ⃗𝐹  as a function of (x,y,z).
c. Describe the force and comment on what the potential itself already reveals about the
force.

Exercise 2.90: 🌶

Given a force field ⃗𝐹 = −𝑥𝑦𝑥 + 𝑥𝑦𝑦. A particle moves from (𝑥, 𝑦) = (0, 0) over the x-
axis to (𝑥, 𝑦) = (1, 0) and then parallel to the y-axis to (𝑥, 𝑦) = (1, 1). In a second
motion, the same particle goes from (𝑥, 𝑦) = (0, 0) over the y-axis to (𝑥, 𝑦) = (0, 1) and
then parallel to the x-axis to end also in (𝑥, 𝑦) = (1, 1).

• Show that not necessarily the work done over the two paths is equal.
• Compute the amount of work done over each of the paths.

Exercise 2.91: 🌶 🌶

A particle of mass m is initially at position 𝑥 = 0. It has zero velocity. On the particle a
force is acting. The force can be described by 𝐹 = 𝐹0 sin 𝑥

𝐿  with 𝐹0 and 𝐿 positive
constants.

1. Show that this force is conservative and find the corresponding potential. Take as
reference point for the potential energy 𝑥 = 𝜋

2𝐿.
2. The particle gets a tiny push, such that it starts moving in the positive x-direction.

Its initial velocity is so small that, for all practical calculations, it can be set to zero.
What will happen to the particle after the push?

3. Find the maximum velocity that the particle can get. At which location(s) will this
take place?

Note: this is a 1-dimensional problem.



Solution 2.92: Solution to Exercise 1

a. Show ∇⃗ × 𝑚 ⃗𝑔 = 0
∇⃗ × 𝑚 ⃗𝑔 = 0? How to compute it? For Cartesian coordinates there is an easy to
remember rule:

∇⃗ × ⃗𝐹 =

|
|
|
| 𝑥

𝜕
𝜕𝑥
𝐹𝑥

𝑦
𝜕
𝜕𝑦
𝐹𝑦

𝑧
𝜕
𝜕𝑧
𝐹𝑧|

|
|
|

(2.193)

If we chose our coordinates such that ⃗𝑔 = −𝑔𝑧 we get:

∇⃗ × ⃗𝐹𝑔 =

|
|
|
| 𝑥

𝜕
𝜕𝑥
0

𝑦
𝜕
𝜕𝑦
0

𝑧
𝜕
𝜕𝑧

−𝑚𝑔|
|
|
|
= 0 (2.194)

Thus ⃗𝐹𝑔 is conservative.

b. Find a 𝑉  that satisfies −𝑚 ⃗𝑔 = −∇⃗𝑉
Does −𝑚 ⃗𝑔 = −∇⃗𝑉  have a solution for V? Let’s try, using the same coordinates as
above.

−∇⃗𝑉 = −𝑚 ⃗𝑔 ⇒
𝜕𝑉
𝜕𝑥

= 0 → 𝑉 (𝑥, 𝑦, 𝑧) = 𝑓(𝑦, 𝑧)

𝜕𝑉
𝜕𝑦

= 0 → 𝑉 (𝑥, 𝑦, 𝑧) = 𝑔(𝑥, 𝑧)

𝜕𝑉
𝜕𝑧

= 𝑚𝑔 → 𝑉 (𝑥, 𝑦, 𝑧) = 𝑚𝑔𝑧 + ℎ(𝑥, 𝑦)

(2.195)

f,g,h are unknown functions. But all we need to do, is find one 𝑉  that satisfies −𝑚 ⃗𝑔 =
−∇⃗𝑉 .

So, if we take 𝑉 (𝑥, 𝑦, 𝑧) = 𝑚𝑔𝑧 we have shown, that gravity in this form is conservative
and that we can take 𝑉 (𝑥, 𝑦, 𝑧) = 𝑚𝑔𝑧 for its corresponding potential energy.

By the way: from the first part (curl F = 0), we know that the force is conservative and
we know that we could try to find V from

𝑉 (𝑥, 𝑦, 𝑧) = − ∫
𝑟𝑒𝑓

𝑚 ⃗𝑔 ⋅ 𝑑 ⃗𝑟 = ∫
𝑟𝑒𝑓

𝑚𝑔𝑧 ⋅ 𝑑 ⃗𝑟

= ∫
𝑟𝑒𝑓

𝑚𝑔𝑑𝑧 = 𝑚𝑔𝑧 + 𝑐𝑜𝑛𝑠𝑡
(2.196)

Solution 2.93: Solution to Exercise 3

Click for the solution Friction Not Conservative.

Solution 2.94: Solution to Exercise 4

Click for the solution Conservative Force.

/ExerciseFrictionNotC-fd3cd448789f4ac69859a6b82361d71e.pdf
/ExerciseConservative-bd95a6e3ae373090a7cb723a510cd0eb.pdf


Solution 2.95: Solution to Exercise 5

Click for the solution Non-Conservative Force.

Solution 2.96: Solution to Exercise 6

Click for the solution Potential energy & Force.

Solution 2.97: Solution to Exercise 7

Click for the solution Force Field.

Solution 2.98: Solution to Exercise 8

Click for the solution Sinusoidal Force Field.

Exercise 2.99: Shooting a ball using a spring 🌶

A ball with mass 𝑚 is horizontally pressed against a spring with spring constant 𝑘,
compressing the spring by Δ𝑥.

1. Express the velocity of the ball when released.
2. Why is in real life the actual velocity of the ball less (friction is not the answer)?
3. Why is the velocity of the ball less when shot vertically?

/ExerciseConservative-f8326d83c147e162d33f1ba8c187ad2d.pdf
/PotentialEnergyxy-ea5d91ab9097eee3884cb6687678330e.pdf
/ForceField-357543e8b5bfc3d674f996eb115e016e.pdf
/ForceSin-b94df217e5155ccb30aadbae042bf783.pdf


Exercise 2.101: Firing a cannon ball⁶ 🌶

1. Show that, if you ignore drag, a projectile fired at an initial velocity 𝑣0 and angle 𝜃
has a range 𝑅 given by

𝑅 = 𝑣2
0 sin 2𝜃

𝑔
(2.197)

1. A target is situated 1.5 km away from a cannon across a flat field. Will the target
be hit if the firing angle is 42∘ and the cannonball is fired at an initial velocity of
121 m/s? (Cannonballs, as you know, do not bounce).

2. To increase the cannon’s range, you put it on a tower of height ℎ0. Find the
maximum range in this case, as a function of the firing angle and velocity,
assuming the land around is still flat.

Exercise 2.102: Pushing a box uphill⁷ 🌶

You push a box of mass 𝑚 up a slope with angle 𝜃 and kinetic friction coefficient 𝜇. Find
the minimum initial speed 𝑣 you must give the box so that it reaches a height ℎ. Use
energy and work to find the answer.

⁶Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)
⁷Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)



Exercise 2.103: Work done dragging a board⁸ 🌶 🌶

A uniform board of length 𝐿 and mass 𝑀  lies near a boundary that separates two
regions. In region 1, the coefficient of kinetic friction between the board and the surface
is 𝜇1, and in region 2, the coefficient is 𝜇2. Our objective is to find the net work 𝑊  done
by friction in pulling the board directly from region 1 to region 2, under the assumption
that the board moves at constant velocity.

1. Suppose that at some point during the process, the right edge of the board is a
distance 𝑥 from the boundary, as shown. When the board is at this position, what
is the magnitude of the force of friction acting on the board, assuming that it’s
moving to the right? Express your answer in terms of all relevant variables (𝐿, 𝑀 ,
𝑔, 𝑥, 𝜇1, and 𝜇2).

2. As we have seen, when the force is not constant, you can determine the work by
integrating the force over the displacement, 𝑊 = ∫ 𝐹(𝑥)d𝑥. Integrate your
answer from (1) to get the net work you need to do to pull the board from region 1
to region 2.

⁸Exercise from Idema, T. (2023). Introduction to particle and continuum mechanics. Idema (2023)



Exercise 2.105: 🌶 🌶

A point particle (mass 𝑚) drops from a height 𝐻  downwards. It starts with zero initial
velocity. The only force acting is gravity (take gravity’s acceleration as a constant).

• Set up the equation of motion (i.e. N2) for 𝑚.
• Calculate the velocity upon impact with the ground.
• Calculate the kinetic energy of 𝑚 when it hits the ground.
• Calculate the amount of work done by gravity by solving the integral 𝑊12 = ∫2

1
⃗𝐹 ⋅

𝑑 ⃗𝑟.
• Show that the amount of work calculated is indeed equal to the change in kinetic

energy.

Solve this exercise using IDEA.

Exercise 2.106: 🌶 🌶

A hockey puck (𝑚 = 160 gram) is hit and slides over the ice-floor. It starts at an initial
velocity of 10m/s. The hockey puck experiences a frictional force from the ice that can
be modeled as −𝜇𝐹𝑔 with 𝐹𝑔 the gravitational force on the puck. The friction force
eventually stops the motion of the puck. Then the friction is zero (otherwise it would
accelerate the puck from rest to some velocity :smiley: ). Constant 𝜇 = 0.01.

• Set up the equation of motion (i.e. N2) for 𝑚.
• Solve the equation of motion and find the trajectory of the puck.
• Calculate the amount of work done by gravity by solving the integral 𝑊12 = ∫2

1
⃗𝐹 ⋅

𝑑 ⃗𝑟.
• Show that the amount of work calculated is indeed equal to the change in kinetic

energy.
• Solve this exercise using IDEA.

Exercise 2.107: 🌶

An electron (mass m, charge -e) is in a static electric field. The electric field is of the form
⃗𝐸 = 𝐸0 sin(2𝜋𝑋

𝐿 )𝑥. As a consequence, the electron experiences a force ⃗𝐹 = −𝑒 ⃗𝐸 Due
to this force, the electron moves from position 𝑥 = 1

4𝐿 to 𝑥 = 0.

• Calculate the amount of work done by the electric field.
• Assuming that the electron was initially at rest, what is the velocity at 𝑥 = 0?

Exercise 2.108: 🌶

A force 𝐹 = 𝐹0𝑒−𝑡/𝜏  is acting on a particle of mass m. The particle is initially at position
𝑥 = 0. It is, starting at 𝑡 = 0, moving at a constant velocity 𝑣0 > 0 to 𝑥 = 𝐿, (𝐿 > 0).

a. Calculate the amount of work done by 𝐹 .
b. The amount of work done is equal to the change in kinetic energy. However, the
particle doesn’t change its kinetic energy. Why is this general rule not violated in this
case?



Exercise 2.109: Work by a lineair force 🌶

A point particle of mass 𝑚 = 2kg is at 𝑡 = 0 at position 𝑥 = 0. It has initial velocity 𝑣0.
From 𝑡 = 0 to 𝑡𝑠𝑡𝑜𝑝 = 4s it is under the influence of a force 𝐹(𝑥) that linearly increases
with the position: 𝐹(𝑥) = 𝑘𝑥 with 𝑘 > 0. This is a 1D problem.

The top graph show the position of the particle. The bottom graph shows the Work done
on the particle by the force and the kinetic energy of the particle.

Analyse this situation and calculate the work done by the force at any time. Is the work
done in this case always sufficient to account for the change in kinetic energy? What
does it mean if the work is positive or negative?

Are the red (𝑊 ) line and the green (𝐸𝑘𝑖𝑛) parallel? What does that mean?

Solution 2.110: Solution to Exercise 9

1. 𝑊 = Δ𝐸𝑘𝑖𝑛 = ∫𝑥
0

𝐹d𝑥 = ∫𝑥
0

𝑘𝑥𝑑𝑥 = 1/2𝑘𝑥2 = 1/2𝑚𝑣2 ⇒ 𝑣 = √𝑘𝑥2

𝑚
2. The spring has mass as well.
3. The gravitational does work as well (𝑊 = 𝐹𝑔d𝑥 < 0)

Solution 2.111: Solution to Exercise 13



Solution 2.113: Solution to Exercise 15

Work done by electric field when the electron moves from 𝑥 = 1
4𝐿 to 𝑥 = 0:

𝑊 = ∫
0

1
4𝐿

⃗𝐹  .𝑑 ⃗𝑠 = −𝑒𝐸0 ∫
0

1
4𝐿

sin(2𝜋 𝑥
𝐿

)𝑑𝑥 =

−𝑒𝐸0
𝐿
2𝜋

[− cos(2𝜋 𝑥
𝐿

)]
0

1
4𝐿

= 1
2𝜋

𝑒𝐸0𝐿
(2.198)

Work done is gain in kinetic energy: Δ𝐸𝑘𝑖𝑛 = 𝑊 . Assuming the only work done is by
the electric field and using initial velocity is zero: 𝑣𝑖 = 0 :

1
2
𝑚𝑣2 =  1

2𝜋
𝑒𝐸0𝐿 ⇒ 𝑣 =  √𝑒𝐸0𝐿

𝜋𝑚
(2.199)

Note that indeed the work done is positive, as it should in this case since the electron
starts with zero velocity.

2.3.8.1 Exercise set 1

2.3.8.2 Answers set 1

2.3.8.3 Exercise set 2

2.3.8.4 Answers set 2

Solution 2.114: Solution to Exercise 16

𝑊 = ∫
𝐿

0

⃗𝐹  .𝑑 ⃗𝑠 = ∫
𝐿

0
𝐹0𝑒− 𝑡

𝜏  𝑑𝑥 (2.200)

Particle velocity is 𝑣0 = 𝑐𝑜𝑛𝑠𝑡. Thus, trajectory 𝑥(𝑡) = 𝑣0𝑡 since at 𝑡 = 0 → 𝑥 = 0
Consequently: 𝑥 = 𝐿 → 𝑡 =  𝐿

𝑣0

Thus, we can write for the amount of work done:

𝑊 = ∫
𝐿
𝑣0

0
𝐹0𝑒− 𝑡

𝜏 ⋅ 𝑣0𝑑𝑡 =

𝐹0𝑣0[−𝜏𝑒− 𝑡
𝜏 ]

𝐿/𝑣0

0
= 𝐹0𝑣0𝜏(1 − 𝑒− 𝐿

𝑣0𝜏 )
(2.201)

We note: 𝑊 > 0 and naively, we could expect that the kinetic energy of the particle
would have increased. But that isn’t the case: it started with 𝐸𝑘𝑖𝑛 = 1

2𝑚𝑣2
0 and it kept

this along the entire path as it is given that the particle is traveling with a constant
velocity.

From this last statement, we immediately learn, that there must be a second force acting
on the particle. This force is exactly equal and opposite to 𝐹  at all times! Otherwise, the
particle would accelerate and change its velocity. Consequently, this second force also
perform work on 𝑚, the amount is exactly −𝑊  and thus the total work done on the
particle is zero which reflects that the particle does not change its kinetic energy.



2.4 Angular Momentum, Torque & Central Forces
Updated: 18 jan 2026

2.4.1 Torque & Angular Momentum
From experience we know that if we want to unscrew a bottle, lift a heavy object on one
side, try to unscrew a screw, we better use ‘leverage’.

Figure 2.115:  Lifting is easier using leverage.

With a relatively small force 𝐹𝑆 , we can lift the side of a heavy object. The key concept to
use here is torque, which in words is loosely formulated: apply the force using a long arm
and the force seems to be magnified. The torque is then force multiplied by arm:

𝜏 = 𝐹𝑜𝑟𝑐𝑒 𝑡𝑖𝑚𝑒𝑠 𝑎𝑟𝑚

This is, of course, too sloppy for physicists. We need strict, formal definitions. So, we put the
above into a mathematical definition.

torque

⃗𝜏 ≡ ⃗𝑟 × ⃗𝐹 (2.202)

That is: torque (or krachtmoment in Dutch) is the cross product of ‘arm’ as a vector(!) and
the force. We notice a few peculiarities.

1. like force, torque is a vector. That is: it has a magnitude and a direction. In principle:
three components.

2. its direction is perpendicular to the force vector ⃗𝐹  and perpendicular to the arm ⃗𝑟.
3. the arm is not a number: it is a vector!

We further know from experience that we can balance torques, like we can balance forces.
Rephrased: the net effect of more than one force is found by adding all the forces (as
vectors!) and using the net force in Newtons Second Law: 𝑚 ⃗𝑎 = ∑ ⃗𝐹𝑖 = ⃗𝐹𝑛𝑒𝑡. From
Newtons First Law, we immediately infer: if ∑ ⃗𝐹𝑖 = ⃗𝐹𝑛𝑒𝑡 = 0 then the object moves at
constant velocity. We can move with the object at this speed and conclude that it from this
perspective has zero velocity: it doesn’t move, i.e. it is in equilibrium.

The same holds for torque: we can work with the sum of all torques that act on an object:
∑ ⃗𝜏𝑖 = ⃗𝜏𝑛𝑒𝑡. And if this sum is zero, the object is in equilibrium.

However, there is a catch: using torques requires that we are much more explicit and precise
about the choice of our origin. Why? The reason is in the ‘arm’. That is only defined if we
provide an origin.

2.4.1.1 The seesaw and torque
Let’s consider a simple example (simple in the sense that we are all familiar with it): the
seesaw.

Figure 2.116:  An adult (left) and a child (right) on a seesaw.



It is obvious that the adult -seesawing with the child- should sit much closer to the pivot
point than the child. That is: we assume that the mass of the adult is greater than that of the
child.

Let’s turn this picture into one that captures the essence and includes the necessary physical
quantities, and then draw a free-body diagram.

Figure 2.117:  Free-body diagram of the seesaw and the masses.

What did we draw?

1. The force of gravity acting on the two masses 𝑀  and 𝑚. That is obvious: without
forces nothing will happen and there is nothing to be analyzed.

2. The ‘reaction forces’ from the seesaw on both masses. Why? If the seesaw is in
equilibrium, then each of the masses is in equilibrium and the sum of forces on each
mass must be zero.

3. The distance of each of the masses to the pivot point. Why? Leverage! The heavy 𝑀
must be closer to the pivot point the get equilibrium.

4. An origin 𝑂. Why? We need a point to measure the ‘arm’, ‘leverage’, from.
5. The 𝑧-coordinate. Why? We deal with forces in the vertical direction. Hence a

coordinate, a direction that we all use, is handy.

Analysis
Time for a first analysis: what keeps this seesaw in equilibrium?

1. The sum of forces on each of the masses is zero. As gravity pulls them down, the
seesaw must exert a force of the same magnitude but in the opposite direction. These
are the green forces.

2. With this idea we have the masses in equilibrium, but not necessarily the seesaw.
Why? We did not consider forces on the seesaw. Which are these: (a) the reaction
force (i.e. the N3 pair) of the green force from the seesaw on mass 𝑀 . We did not draw
that! Similarly, for the mass 𝑚.

3. Now that we focus on the seesaw itself: this is in equilibrium (that is given), but there
are two forces acting on it in the negative 𝑧-direction as we found in (2). Even if we
consider the mass of the seesaw: that will not help, gravity will pull it downwards.
What did we forget? The force at the pivot point, of course! The pivot will exert an
upward force, preventing the seesaw from falling down. For simplicity, we assume that
the seesaw has zero mass. Thus, there are three forces acting on it: −𝑀𝑔, −𝑚𝑔, 𝐹𝑝
with 𝐹𝑝 − 𝑀𝑔 − 𝑚𝑔 = 0.

Let’s redraw, now concentrating on the forces on the seesaw.

Figure 2.118:  Free-body diagram of the seesaw.

Analysis part 2
We know that the seesaw is in equilibrium, thus



𝐹𝑝 − 𝑀𝑔 − 𝑚𝑔 = 0 (2.203)

This guarantees that the seesaw does not change its velocity, and as it does not move at
some time 𝑡0, it doesn’t move for all 𝑡 > 𝑡0.

But this doesn’t guarantee that the seesaw doesn’t rotate around the pivot point. For that we
need that the ‘leverages’ on the left and right side ‘perform’ the same.
Making this precise: the torques exerted on the seesaw must also equate to zero.
We have 3 forces, thus 3 torques: −𝑀𝑔 with arm 𝐿, −𝑚𝑔 with arm 𝑙 and 𝐹𝑝 with arm zero.

Now we need to be even more precise: torque is a vector and it is made as a cross product of
the vector ‘arm’ and the force.
We have already drawn an 𝑥-coordinate in the figure, that will allow us to write the ‘arm’ as
a vector. After all, we need to evaluate the cross product ⃗𝑟 × ⃗𝐹 . We do that for the three
forces, starting on the left:

⃗𝜏1 = −𝐿𝑥 × (−𝑀𝑔)𝑧 = 𝑀𝐿𝑔 𝑥 × 𝑧 = 𝑀𝐿𝑔(−𝑦) = −𝑀𝐿𝑔 𝑦 (2.204)

We have used here, that the cross product of 𝑥 with 𝑧 is equal to −𝑦 with 𝑦 the unit vector
in the 𝑦-direction pointing into the screen.

Similarly for the force coming from the small mass 𝑚 on the right side:

⃗𝜏2 = 𝑙𝑥 × (−𝑚𝑔)𝑧 = −𝑚𝑙𝑔 𝑥 × 𝑧 = 𝑚𝑙𝑔 𝑦 (2.205)

Finally, the torque from the force exerted by the pivot point:

⃗𝜏3 = 0𝑥 × 𝐹𝑝𝑧 = 0 (2.206)

Next, we evaluate the total torque:

⃗𝜏1 + ⃗𝜏2 + ⃗𝜏3 = (𝑚𝑙𝑔 − 𝑀𝐿𝑔)𝑦 (2.207)

In order for the seesaw not to start rotating, we must have that the torque is zero and thus:

∑ ⃗𝜏𝑖 = 0 ⇒ 𝑚𝑙𝑔 = 𝑀𝐿𝑔 → 𝑚
𝑀

= 𝐿
𝑙

(2.208)

A result we expected: the greater mass should be closer to the pivot point.

2.4.1.2 Different origin
So far, so good. But what if we had chosen the origin not at the pivot point, but somewhere
to the left? Then all ‘arm’ will change length. And all torques will be different. Wouldn’t that
make ∑ ⃗𝜏𝑖 ≠ 0?
No, it wouldn’t! Let’s just do it and recalculate. In the figure below, we have moved the
origin to the left end of the seesaw. The distance from the heavy mass to the origin is Λ
(green arrow).

Figure 2.119:  Free-body diagram with the origin located at the seesaw’s end.

We still have that the sum of forces is zero. But what about the sum of torques? Obviously,
the choice of the origin cannot affect the seesaw: it is still in balance, regardless of our
choice of the origin. Let’s see if that is correct:



∑ ⃗𝜏𝑖 = Λ𝑥 × −𝑀𝑔𝑧 + (Λ + 𝐿) × 𝐹𝑝𝑧 + (Λ + 𝐿 + 𝑙)𝑥 × −𝑚𝑔𝑧 (2.209)

We have drawn the three unit vectors 𝑥, 𝑦, 𝑧 in the figure. We will use again: 𝑥 × 𝑧 = −𝑦.
This simplifies the torque equation above to:

∑ ⃗𝜏𝑖 = [𝑀𝑔Λ − (Λ + 𝐿)𝐹𝑝 + 𝑚𝑔(Λ + 𝐿 + 𝑙)]𝑦 (2.210)

This is clearly more complicated than the expression we had with the first choice of the
origin. Moreover, the force from the pivot point shows up in our expression.

Luckily, we have equilibrium. Hence: 𝐹𝑝 − 𝑀𝑔 − 𝑚𝑔 = 0 ⇒ 𝐹𝑝 = 𝑀𝑔 + 𝑚𝑔. We substitute
this into our torque equation:

∑ ⃗𝜏𝑖 = [𝑀𝑔Λ − (Λ + 𝐿)(𝑀𝑔 + 𝑚𝑔)) + 𝑚𝑔(Λ + 𝐿 + 𝑙)]𝑦
= [𝑀𝑔(Λ − (Λ + 𝐿)) + 𝑚𝑔(−(Λ + 𝐿) + Λ + 𝐿 + 𝑙)]𝑦
= [−𝑀𝑔𝐿 + 𝑚𝑔𝑙]𝑦

(2.211)

Which is exactly the same expression as we found before. So, indeed, the choice of the
origin doesn’t matter.

Conclusion

For equilibrium we need that the sum of torques is zero:

∑
𝑖

⃗𝜏𝑖 = 0 (2.212)

2.4.2 Angular Momentum
From our seesaw example we learn: the seesaw can only be in equilibrium if the sum of
torques is zero. What if this sum is non-zero? That is, a net torque operates on the seesaw.

We know that the seesaw will rotate and in order to balance it, we have to shift at least one
of the masses.

In which direction will it rotate?

Before answering: first we need to think about direction of rotation. Does it have
direction and if so: how do we make clear what that is?

Again the seesaw will give guidance. Suppose we remove the smaller mass all together.
Then, it is obvious: the ‘heavy’ left side will rotate to the ground and the light right side
upwards. From the point of view we are standing: the seesaw will rotate counter clockwise.

We will use the corkscrew rule or right hand rule to give that a direction: rotate a corkscrew
clockwise and the screw will move into the cork away from you; rotate a corkscrew counter
clockwise and it will move out of the cork, towards you. Of course, in stead of a corkscrew
you can think of a screwdriver or a water tap: closing is rotating ‘clock wise, opening the
tap is counter clockwise.

Figure 2.120:  The rotation is given by the black arrow. You can find it by using the
corkscrew rule: rotating a corkscrew as the blue arrow indicates gives that the screw moves

forward like the black arrow.

With this, we can define the direction of rotation better than via clock or counter clock wise.
In our seesaw example, we will say: if the seesaw rotates clockwise, its rotation is described
by a vector that points in the positive 𝑦-direction as given in the figure, that is pointing into
the paper (or screen).



Now, we can couple this to the direction of the torque. We saw -taking the origin at the
pivot point- two torques acting on the seesaw. The large mass has its torque pointing in the
negative 𝑦-direction: it points out of the screen/paper. And this torque tries to rotate the
seesaw counter clockwise. On the other hand, the small mass has a torque pointing in the
positive 𝑦-direction which is in line with it trying to rotate the seesaw clockwise.
Which of the two is ‘strongest’ determines the direction of rotation: if 𝑀𝑔𝐿 > 𝑚𝑔𝑙 then the
net torque is in the minus-𝑦 direction. That is, the torque of the larger mass is more negative
than the smaller one is positive: −𝑀𝑔𝐿 + 𝑚𝑔𝑙 < 0 and the net torque points towards us.

The quantity that goes with this, is the angular momentum. It is defined as

angular momentum

⃗𝑙 ≡ ⃗𝑟 × ⃗𝑝 (2.213)

Note that it is a cross product as well. Hence it is a vector itself. Further note that ⃗𝑟 × ⃗𝑝 ≠
⃗𝑝 × ⃗𝑟. The order matters! First ⃗𝑟 then ⃗𝑝. If you do it the other way around, you unwillingly

have introduced a minus sign that should not be there.
Furthermore, note that since ⃗𝑙 ≡ ⃗𝑟 × ⃗𝑝, ⃗𝑙 is perpendicular to the plane formed by ⃗𝑟 and ⃗𝑝.

Figure 2.121:  Angular momentum of a particle at a certain position with momentum.

2.4.2.1 Torque & Analogy to N2
Angular momentum obeys a variation of Newton’s second law that ties it directly to torque.

⃗𝑙 = ⃗𝑟 × ⃗𝑝 ⇒ (2.214)

𝑑 ⃗𝑙
𝑑𝑡

= 𝑑( ⃗𝑟 × ⃗𝑝)
𝑑𝑡

= 𝑑 ⃗𝑟
𝑑𝑡⏟
= ⃗𝑣

× ⃗𝑝

⏟
=0𝑠𝑖𝑛𝑐𝑒 ⃗𝑣//𝑝⃗

+ ⃗𝑟 × 𝑑 ⃗𝑝
𝑑𝑡⏟

𝑁2:= ⃗𝐹

= ⃗𝑟 × ⃗𝐹 (2.215)

Thus, we find a general law for the angular momentum:

N2 for angular momentum

𝑑 ⃗𝑙
𝑑𝑡

= ⃗𝑟 × ⃗𝐹 (2.216)

Again, note that the right hand side is a cross product, so the order does matter.

With the torque denoted by ⃗𝜏 , we have

⃗𝜏 ≡ ⃗𝑟 × ⃗𝐹 (2.217)
then we can write down an equation similar to N2 ( ̇⃗𝑝 = ⃗𝐹) but now for angular motion

̇⃗𝑙 = ⃗𝜏 (2.218)



where the force is replaced by the torque and the linear momentum by the angular
momentum.

NB: Note that the torque and angular moment change if we choose a different origin as this
changes the value of ⃗𝑟.

Intermezzo: cross product

Here is some recap for the cross product. See also the Lin. Alg. book page. A cross
product of two vectors ⃗𝑎 and ⃗𝑏 is defined as

⃗𝑐 = ⃗𝑎 × ⃗𝑏 ≡ | 𝑎 | | 𝑏 | sin 𝜃 𝑛̂ (2.219)

Here 𝜃 is the angle between ⃗𝑎 and ⃗𝑏, and 𝑛̂ is a unit vector normal to the plane spanned
by ⃗𝑎, ⃗𝑏 with direction given by the right-hand rule.

Figure 2.122:  Right hand rule for cross products. Adapted from Wikimedia Commons,
licensed under CC-BY-SA 4.0.

From the definition it is clear that | ⃗𝑎 × ⃗𝑏 | is the area of the parallelogram spanned by
⃗𝑎, ⃗𝑏.

Figure 2.123:  Area of cross products. From Wikimedia Commons, public domain.

The cross product is bilinear, anti commutative ( ⃗𝑎 × ⃗𝑏 = −( ⃗𝑏 × ⃗𝑎)) and distributive
over addition.

The formula is for computation in an orthonormal basis is

(
((

𝑎1
𝑎2
𝑎3)

)) ×
(
((

𝑏1
𝑏2
𝑏3)

)) =
(
((

𝑎2𝑏3 − 𝑎3𝑏2
−(𝑎1𝑏3 − 𝑎3𝑏1)

𝑎1𝑏2 − 𝑎2𝑏1 )
)) (2.220)

Figure 2.124:  How to remember this rule for the cross product in Cartesian or polar
coordinates.

The formula can be derived from the cross product for orthonormal basis vectors, e.g.
𝑥, 𝑦, 𝑧

𝑥 × 𝑦
𝑦 × 𝑧
𝑧 × 𝑥

=
=
=

𝑧
𝑥
𝑦

(2.221)

Notice the cyclic structure of the equations.

https://interactivetextbooks.tudelft.nl/linear-algebra/Chapter1/Cross\_Product.html
https://commons.wikimedia.org/wiki/File:Magnetic\_field\_element\_%28Biot-Savart\_Law%29\_PRIME.svg
https://commons.wikimedia.org/wiki/File:Cross\_product\_parallelogram.svg


It is a common mistake to identify angular momentum with rotational motion. That is not
correct. A particle that travels in a straight line will, in general, also have a non-zero angular
momentum, see Figure 11. Here we look at a free particle: there are no forces working on it.
So it travels in a straight line, with constant momentum.

Figure 2.125:  Angular momentum of a free particle.

However, the particle position does change over time. So: is its angular momentum constant
or not?
That is easy to find out. We could take ‘N2’ for angular momentum:

𝑑 ⃗𝑙
𝑑𝑡

= ⃗𝑟 × ⃗𝐹⏟
=0

𝑓𝑟𝑒𝑒𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

= 0 ⇒ ⃗𝑙 = 𝑐𝑜𝑛𝑠𝑡 (2.222)

Clearly, the angular momentum of a free particle is constant. Moreover, the momentum of a
free particle is also constant. But what about the position vector: isn’t that changing over
time and eventually becomes very, very long? Why does that not change ⃗𝑟 × ⃗𝑝?
Take a look at Figure 12. We have chosen the 𝑥𝑦-plane such that both ⃗𝑟 and ⃗𝑝 are in it.
Furthermore, we have taken it such that ⃗𝑝 is parallel to the 𝑥-axis.

Figure 2.126:  Angular momentum of a free particle is constant.

At some point in time, the particle is at position ⃗𝑟1. Its angular momentum is perpendicular
to the 𝑥𝑦-plane and has magnitude | | ⃗𝑟1 × ⃗𝑝 | | = 𝑟⟂𝑝. Later in time it is at position ⃗𝑟2.
Still, its angular momentum is perpendicular to the 𝑥𝑦-plane and has magnitude | | ⃗𝑟2 ×
⃗𝑝 | | = 𝑟⟂𝑝, indeed identical to the earlier value. This shows that indeed the angular

momentum of a free particle is constant.

2.4.3 Examples & Exercises

Example: Throwing a basketball

As seen in class: one person throws a basketball to another via a bounce on the ground,
the basketball starts to spin after hitting the ground although initially it did not.



Figure 2.127:  A bouncing basketball.

When the ball hits the ground a friction force is acting on the ball. This force will apply a
torque on the ball. The friction is directed opposite to the direction of motion. The arm ⃗𝑟
from the center of the ball to where the force is acting, is downwards. Using the right-
hand rule we find that the torque is pointing in the plane of the screen, and thus the
rotation is clockwise (forwards spin).

The forwards momentum of the ball is reduced by the action of the force. The upwards
components is just flipped by the bounce on the ground. Therefore the outgoing ball is
bouncing up at a steeper angle than it is was incoming.

Conservation of angular momentum & spinning wheel

As seen in class, we have a student sitting on a chair that can rotate (swivel chair). The
student is holding a bicycle wheel in horizontal position.

Figure 2.128:  Student with a rotating wheel on a swivel chair.

Once the student starts to spin the wheel while sitting on the chair, the student will start
to rotate in the opposite direction (with smaller angular velocity, later on we will see
why their speeds are different). There is no external force on the student + wheel.
Consequently, the total angular momentum must stay constant. But the student exerts
an angular momentum on the wheel, causing it to rotate. But at the same time, due to
action = - reaction, the wheel exerts also a torque on the student. But in the opposite
direction. Thus, to compensate the angular momentum pointing up (counter clockwise
rotation), an angular momentum pointing down (clockwise rotation) of the same
magnitude must occur, keeping the total angular momentum of student + wheel
constant.

Note



Exercise 1: A point particle (mass 𝑚) is initially located at position 𝑃 = (𝑥0, 𝐻, 0). At
𝑡 = 0, it is released from rest and falls in a force field of constant acceleration ⃗𝑎 =
(0, −𝑎, 0) that acts on the mass.

Analyze what happens to the angular momentum of 𝑚.

Note

Exercise 2: The same question, but now the particle has an initial velocity ⃗𝑣 = (𝑣0, 0, 0).

Note

Exercise 3: Similar situation: can you find an example of a falling object for which the
angular momentum stays constant? Ignore friction with the air.

Solution to Exercise 1: A point particle (mass

The particle falls under a force that points in the negative 𝑦-direction. As a consequence,
it will start moving vertically downwards:

𝑥 : ℎ(1𝑐𝑚)𝑚𝑑𝑣𝑥
𝑑𝑡

= 0 → 𝑣𝑥 = 𝐶1 = 0

𝑦 : ℎ(1𝑐𝑚)𝑚
𝑑𝑣𝑦

𝑑𝑡
= −𝑚𝑎 → 𝑣𝑦 = −𝑎𝑡 + 𝐶2 = −𝑎𝑡

(2.223)

Thus, we find for the momentum om the particle: ⃗𝑝 = (0, −𝑚 𝑎𝑡).

The position of 𝑚 follows from:

𝑥 : ℎ(1𝑐𝑚)𝑑𝑥
𝑑𝑡

= 𝑣𝑥 = 0 → 𝑥(𝑡) = 𝐶3 = 𝑥0

𝑦 : ℎ(1𝑐𝑚)𝑑𝑦
𝑑𝑡

= 𝑣𝑦 = −𝑎𝑡 → 𝑦(𝑡) = −1
2
𝑎𝑡2 + 𝐶4 = 𝐻 − 1

2
𝑎𝑡2

(2.224)

We can now compute the angular momentum:

⃗𝑙 = ⃗𝑟 × ⃗𝑝

= (𝑥0𝑥 + (𝐻 − 1
2
𝑎𝑡2)𝑦) × (−𝑚𝑎𝑡𝑦)

= −𝑚𝑥0𝑎𝑡𝑥 × 𝑦⏟
=𝑧

+ 𝑥0(𝐻 − 1
2
𝑎𝑡2)𝑦 × 𝑦⏟

=0

= −𝑚𝑥0𝑎𝑡 𝑧

(2.225)



Thus, the angular momentum is pointing in the negative 𝑧-direction and increases
linearly with time in magnitude.

We could have tried to find this via the variation of N2 for angular momentum. Now, we
need to compute the torque on 𝑚 and solve 𝑑 ⃗𝑙

𝑑𝑡 = ⃗𝜏 . This goes as follows:

⃗𝜏 = ⃗𝑟 × ⃗𝐹
= (𝑥𝑥 + 𝑦𝑦) × −𝑚𝑎𝑦
= −𝑚𝑎 𝑥𝑧

(2.226)

And thus:

𝑑 ⃗𝑙
𝑑𝑡

= −𝑚𝑎 𝑥𝑧 (2.227)

To get any further, we need information about 𝑥(𝑡). From the 𝑥-component of N2 we
know (see above): 𝑥(𝑡) = 𝑥0. If we plug this in, we get:

𝑑 ⃗𝑙
𝑑𝑡

= −𝑚𝑎 𝑥0𝑧 → ⃗𝑙 = −𝑚𝑥0𝑎𝑡 + 𝐶5 = −𝑚𝑥0𝑎𝑡 (2.228)

where we have used: 𝑡 = 0 → ⃗𝑝 = 0 → ⃗𝑙 = 0 ⇒ 𝐶5 = 0

Solution to Exercise 2: The same question, but now the particle has an initial
velocity

We can follow the same procedure as in exercise (6.1). But now, the outcome of the 𝑥-
component of N2 changes.

𝑥 : ℎ(1𝑐𝑚)𝑚𝑑𝑣𝑥
𝑑𝑡

= 0 → 𝑣𝑥 = 𝐶1 = 𝑣0

𝑦 : ℎ(1𝑐𝑚)𝑚
𝑑𝑣𝑦

𝑑𝑡
= −𝑚𝑎 → 𝑣𝑦 = −𝑎𝑡 + 𝐶2 = −𝑎𝑡

(2.229)

Thus, we find for the momentum om the particle: ⃗𝑝 = (𝑚𝑣0, −𝑚𝑎𝑡).

The position of 𝑚 follows from:

𝑥 : ℎ(1𝑐𝑚)𝑑𝑥
𝑑𝑡

= 𝑣𝑥 = 𝑣0 → 𝑥(𝑡) = 𝑣0𝑡 + 𝐶3 = 𝑥0 + 𝑣0𝑡

𝑦 : ℎ(1𝑐𝑚)𝑑𝑦
𝑑𝑡

= 𝑣𝑦 = −𝑎𝑡 → 𝑦(𝑡) = −1
2
𝑎𝑡2 + 𝐶4 = 𝐻 − 1

2
𝑎𝑡2

(2.230)

We can now compute the angular momentum:

⃗𝑙 = ⃗𝑟 × ⃗𝑝

= ((𝑥0 + 𝑣0𝑡)𝑥 + (𝐻 − 1
2
𝑎𝑡2)𝑦) × (𝑚𝑣0𝑥 − 𝑚𝑎𝑡𝑦)

= −𝑚(𝑥0 + 𝑣0𝑡)𝑎𝑡𝑥 × 𝑦⏟
=𝑧

+ (𝐻 − 1
2
𝑎𝑡2)𝑚𝑣0 𝑦 × 𝑥⏟

=−̂𝑧

= −𝑚(𝐻𝑣0 + 𝑥0𝑎𝑡 + 1
2
𝑣0𝑎𝑡2 )𝑧

(2.231)

Thus, the angular momentum still points in the negative 𝑧-direction but increases
quadratically with time in magnitude.



2.4.4 Central Forces
We have looked at a specific class of forces: the conservative ones. Here we will inspect a
second class, that is very useful to identify: the central forces.

A force is called a central force if:

⃗𝐹 = | ⃗𝐹 ( ⃗𝑟) | 𝑟̂ (2.232)

In words: a force is central if it points always into the direction of the origin or exactly in
the opposite direction. The reason to identify this class is in the consequences it has for the
angular momentum.

Suppose, a particle of mass 𝑚 is subject to a central force. Then we can immediately infer
that its angular momentum is a constant:

𝑖𝑓 ⃗𝐹 = | ⃗𝐹 ( ⃗𝑟) | 𝑟̂𝑡ℎ𝑒𝑛𝑑 ⃗𝑙
𝑑𝑡

= ⃗𝑟 × ⃗𝐹 = | ⃗𝐹 ( ⃗𝑟) | ⃗𝑟 × 𝑟̂ = 0 (2.233)

where we have used that ⃗𝑟 and 𝑟̂ are always parallel so their cross-product is zero.

The above is rather trivial, but has a very important consequence: a particle that moves
under the influence of a central force, moves with a constant angular momentum (vector!)
and must move in a plane. It cannot get out of that plane. Thus its motion is at maximum a
2-dimensional problem. We can always use a coordinate system, such that the motion of the
particle is confined to only two of the three coordinates, e.g. we can choose our 𝑥, 𝑦 plane
such that the particle moves in it and thus always has 𝑧(𝑡) = 0.

Why is this so? Why does the fact that the angular momentum vector is a constant
immediately imply that the particle motion is in a plane? The argumentation goes as
follows.
Imagine a particle that moves under the influence of a central force. At some point in time it
will have position ⃗𝑟0 and momentum ⃗𝑝0. Neither of them is zero. We will assume that ⃗𝑟0 and
⃗𝑝0 are not parallel (in general they will not be). Thus they define a plane. Due to the cross-

product ⃗𝑙0 = ⃗𝑟0 × ⃗𝑝0 is perpendicular to this plane.
A little time later, say Δ𝑡 later, both position and momentum will have changed. Since the
force is central, the force is also in the plane defined by the initial position and momentum.
Thus the change of momentum is in that plane as well: ⃗𝑝(𝑡 + Δ𝑡) = ⃗𝑝(𝑡) + ⃗𝐹Δ𝑡. The right
hand side is completely in our plane. And thus, the new momentum is also in the plane. But
that means that the velocity is also in the same plane. An thus the new position ⃗𝑟(𝑡 + Δ𝑡) =
⃗𝑟(𝑡) + 𝑝⃗

𝑚Δ𝑡 must be in the same plane as well. We can repeat this argument for the next
time and thus see, that both momentum and position cannot get out of the plane. This is, of
course, fully in agreement with the fact that ⃗𝑙 = 𝑐𝑜𝑛𝑠𝑡 for a central force.

2.4.5 Central forces: conservative or not?
We can further restrict our class of central forces:

𝑖𝑓 ⃗𝐹 ( ⃗𝑟) = 𝑓(𝑟)𝑟̂𝑡ℎ𝑒𝑛𝐹𝑖𝑠𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑎𝑛𝑑𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 (2.234)



In the above, | ⃗𝐹 ( ⃗𝑟) | = 𝑓(𝑟), that is: the magnitude of the force only depends on the distance
from the origin not on the direction. Rephrased: the force is spherically symmetric. If that is
the case, the force is automatically conservative and a potential does exist.

Both the concept of central forces and potential energy play a pivotal role in understanding
the motion of celestial bodies, like our earth revolving the sun. The planetary motion is an
example of using the concept of central forces. It is, however, also an example in its own
right. Using his new theory, Newton was able to prove that the motion of the earth around
the sun is an ellipsoidal one. It helped changing the way we viewed the world from geo-
centric to helio-centric.

2.4.5.1 Keppler’s Laws
Before we embark at the problem of the earth moving under the influence of the sun’s
gravity, we will go back in time a little bit.

Intermezzo: Tycho Brahe & Johannes Kepler

We find ourselves back in the Late Renaissance, that is around 1550-1600 AD. In Europe,
the first signs of the scientific revolution can be found. Copernicus proposed his
heliocentric view of the solar system. Galilei used his telescope to study the planets and
found further evidence for the heliocentric idea. In Denmark, Tycho Brahe (1546-1601)
made astronomical observations with data of unprecedented precision. He did so
without the telescope as the first records of telescopes date back to around 1608 AD.

Figure 2.131:  left:Tycho Brahe (1546-1601) - right: Sophia Brahe (1559-1643). From
Wikimedia Commons (L, R), public domain.

Brahe initially studied law, but developed a keen interest in astronomy. He was heavily
influenced by the solar eclipse of August 21𝑠𝑡 in 1560. The eclipse had been predicted via
the theory of celestial motion at that time. However, the prediction was off by a day. This
led Brahe to the conclusion that in order to advance celestial science, many more and
much better observations were needed. He devoted much of his time in achieving this.
One of his best assistants was his younger sister, Sophie.

On November 11𝑡ℎ 1572, Brahe observed a bright, new star in the constellation
Cassiopeia (it consists of five bright stars forming a M or W). That was another event
that made him decide to spend his days (or rather nights 😊 ) gathering astronomical
data. The general believe in those days was still that everything beyond the Moon was
eternal, never changing. So, this new star, that all in a sudden appeared, must be closer
to the earth than the Moon itself. Brahe set out to measure its daily parallax against the
five stars of Cassiopeia. But he didn’t observe any parallax. Consequently, the new star’s
position had to be farther out than the Moon and the other planets that did show daily
parallax. Moreover, Brahe kept measuring for months and still found no parallax. That
meant that this new star was even further out than the known planets that show no
daily parallax but did so for periods of month. Brahe reached the conclusion that this
new ‘thing’ thus could not be yet another planet, but that it was a star. Another nail to
the coffin of the Aristotle view. Brahe wrote a small book about it, called De Nova Stella
(published in 1573). He uses the term ‘nova’ for a new star. We see this back in our name

https://commons.wikimedia.org/wiki/File:Tycho\_Brahe.JPG
https://commons.wikimedia.org/wiki/File:Sophie\_Brahe\_portrait.jpg


for the phenomenon observed by Brahe: we call it a supernova. By now it is known that
this new star, this supernova is some 8,000 light years away from us. Brahe was upset by
those who denied the new findings. In his introduction of De Nova Stella he writes
(given here in our modern words): “Oh, coarse characters. Oh, blind spectators of
heaven”. The work and the booklet made his name in Europe as a leading scientist and
astronomer.

In the winter of 1577-1578 a comet, known as the “Great Comet” appeared in the skies. It
was observed by many all over the globe (from the Aztecs in the America’s via European
researchers to the Arabic world, India all the way to Japan). Brahe made thousands of
recordings, some simultaneously done in Denmark (close to Copenhagen) and Prague.
That way, Brahe could establish that the comet was much beyond the Moon.

At the end of his life, Brahe moved to Prague to become the official imperial astronomer
under the protection of Rudolf II, the Holy Roman Emperor. In the later part of his life,
Brahe had Johannes Kepler as his assistant.

Kepler was 6 years old when the Great Comet appeared in the sky. He recorded in his
writings that his mother had taken him to a high place to look at it. At the age of nine,
he witnessed a lunar eclipse in which the Moon is in the Earth shadow, darkening it and
turning quite red. As a child he suffered from smallpox making his vision weak and
limited ability to use his hands. This made it difficult for him to make astronomical
observations. It pushed him to mathematics. But there he was confronted with the
Ptolemaic and the Copernican view on planetary motion. Kepler became a math
professor at the Protestant Stiftsschüle in Graz. He wrote his ideas about the universe,
following the thoughts of Copernicus in a book, that was read by Tycho Brahe. This
brought him into contact with Brahe. In 1600 Kepler and his family moved to Prague as a
consequence of political and religious oppression. He was appointed as assistant to
Brahe and worked with Brahe on a new star catalogue and planetary tables. Brahe died
unexpectedly on October 24th 1601. Two days later, Kepler was appointed as his
successor.

Figure 2.132:  Johannes Kepler (1571-1630). From Wikimedia Commons, public domain.

Kepler worked on a heliocentric version of the universe and in the period 1609-1619
published his first two laws. With these, he changed from trying circular orbits to other
closed ones, to arrive at an elliptical one for Mars. That one was in very good agreement
with the Brahe data, much better than had been achieved before. Kepler realized that the
other planets might also be in elliptical orbits. In comparison with Copernicus he stated:
the planetary orbits are not circles with epi-circles. Instead it are ellipses. Secondly, The
sun is not at the center of the orbit, but in one of the focal points of the ellipse. Thirdly,
the speed of a planet is not a constant.

Kepler’s work was not immediately recognized. On the contrary, Galilei completely
ignored it and many criticized Kepler for introducing physics into astronomy.

https://commons.wikimedia.org/wiki/File:Portrait\_Confused\_With\_Johannes\_Kepler\_1610.jpg


Kepler has formulated three laws that describe features of the orbits of the planets around
the sun.

1. The orbit of a planet is an ellipse with the Sun at one of the two focal points.
2. A line segment joining a planet and the Sun sweeps out equal areas during equal

intervals of time (Law of Equal Areas).
3. The square of a planet’s orbital period is proportional to the cube of the length of the

semi-major axis of its orbit.

Figure 2.133:  Kepler’s 2nd Law of Equal Area.
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𝐴
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𝐴
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𝐵

𝑅3
𝐵

= 𝑐𝑜𝑛𝑠𝑡. (2.235)
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It is important to realize, that Kepler came to his laws by -what we would now call- curve
fitting. That is, he was looking for a generic description of the orbits of planets that would
match the Brahe data. He abandoned the Copernicus idea of circles with epi-circles with the
sun in the center of the orbit. Instead he arrived at ellipses with the sun out of the center, in
one of the focal points of the ellipse.

But, there was no scientific theory backing this up. It is purely ‘data-fitting’. Nevertheless, it
is a major step forward in the thinking about our universe and solar system. It radically
changed from the idea that the universe is ‘eternal’, that is for ever the same and build up of
circles and spheres: the mathematical objects with highest symmetry showing how perfect
the creation of the universe is.

Kepler had formulated his laws by 1619 AD. It would take another 60 years before Isaac
Newton showed that these laws are actually imbedded in his first principle approach: all
that is needed is Newton’s second law and his Gravitational Law.

2.4.6 Newton’s theory and Kepler’s Laws
The planets move under the influence of the gravitational force between them and the sun.
We start with inspecting and classifying the force of gravity. Newton had formulated the
Law of gravity: two objects of mass 𝑚1 and 𝑚2, respectively, exert a force on each other
that is inversely proportional to the square of the distance between the two masses and is
always attractive. In a mathematical equation, we can make this more precise:

⃗𝐹𝑔 = −𝐺𝑚1𝑚2
𝑟2
12

𝑟̂12 (2.236)



In the figure below, the situation is sketched. We have chosen the origin somewhere and
denote te position of the sun and the planet by ⃗𝑟1 and ⃗𝑟2. Gravity works along the vector
⃗𝑟12 = ⃗𝑟2 − ⃗𝑟1. The corresponding unit vector is defined as 𝑟̂12 = ⃗𝑟12

𝑟12
.

Figure 2.134:  The sun and a planet.

Newton realized that he could make a very good approximation. Given that the mass of the
sun is much bigger than that of a planet, the acceleration of the sun due to the gravitational
force of the planet on the sun is much less than the acceleration of the planet due to the
sun’s gravity. For this, we only need Newton’s 3rd law:

𝐹𝑔,𝑠𝑢𝑛𝑜𝑛𝑝𝑙𝑎𝑛𝑒𝑡 = −𝐹𝑔,𝑝𝑙𝑎𝑛𝑒𝑡𝑜𝑛𝑠𝑢𝑛 (2.237)

Hence

𝑚𝑠𝑢𝑛𝑎𝑠𝑢𝑛 = −𝑚𝑝𝑙𝑎𝑛𝑒𝑡𝑎𝑝𝑙𝑎𝑛𝑒𝑡 → 𝑎𝑠𝑢𝑛 =
𝑚𝑝𝑙𝑎𝑛𝑒𝑡

𝑚𝑠𝑢𝑛
𝑎𝑝𝑙𝑎𝑛𝑒𝑡 ≪ 𝑎𝑝𝑙𝑎𝑛𝑒𝑡 (2.238)

Newton concluded, that for all practical purposes, he could treat the sun as not moving.
Next, he took the origin at the position of the sun. And from here on, we can ignore the sun
and pretend that the planet feels a force given by

⃗𝐹 ( ⃗𝑟) = −𝐺𝑚𝑀
𝑟2 𝑟̂ (2.239)

with 𝑀  the mass of the sun and 𝑚 that of the planet. 𝑟 is now the distance from the planet
to the origin and 𝑟̂ the unit vector pointing from the origin to the planet.

First observation: The force is central!

First conclusion: Then the angular momentum of the planet is conserved (is a constant
during the motion of the planet) and the motion is in a plane, i.e. we deal with a 2-
dimensional problem!

Second Observation: The force is of the form ⃗𝐹 ( ⃗𝑟) = 𝑓(𝑟)𝑟̂

Second conclusion: Thus, we do know that a potential energy can be associated with it. It
is a conservative force. This also implies that the mechanical energy of the planet, that is the
sum of kinetic en potential energy, is a constant over time. In other words, there is no
frictional force and the motion can continue forever. This seems to be inline with our
observation of the universe: the time scales are so large that friction must be small.

2.4.6.1 Constant Angular Momentum: Equal Area Law
The first clue towards the Kepler Laws comes from angular momentum. Let’s consider the
earth-sun system (ignoring all other planets in our solar system). As we saw above, gravity
with the sun pinned in the origin, is a central force and thus

𝑑 ⃗𝑙
𝑑𝑡

= ⃗𝑟 × (−𝐺𝑚𝑀
𝑟2

⃗𝑟
𝑟
) = 0 (2.240)



Thus, ⃗𝑙 = 𝑐𝑜𝑛𝑠𝑡. both in length and in direction. From the latter, we can infer that the
motion of the earth around the sun is in a plane. Hence, we deal with a 2-dimensional
problem.

Figure 2.135:  A free body diagram to help determine the area.

At some point in time, the earth is at location ⃗𝑟 (see red arrow in Figure 21). It has velocity
⃗𝑣, given by the black arrow. In a small time interval 𝑑𝑡, the earth will move a little and arrive

at ⃗𝑟 + 𝑑 ⃗𝑟 (the green arrow). As the time interval is very short, we can treat the velocity as a
constant and thus write: 𝑑 ⃗𝑟 = ⃗𝑣𝑑𝑡.

Instead of concentrating on the motion of the earth, we focus on the area traced out by the
earth orbit in the interval 𝑑𝑡. That is the yellow area in Figure 21. This area is composed of
two parts: the light yellow part and a smaller, bright yellow part. The light yellow part has
an area 𝐴1 = 1

2ℎ𝑒𝑖𝑔ℎ𝑡𝑥𝑏𝑎𝑠𝑒. If we make 𝑑𝑡 very small, the height is almost equal to 𝑟 and
the base becomes 𝑣⟂𝑑𝑡 and thus 𝐴1 ≈ 1

2𝑟𝑣⟂𝑑𝑡. For the smaller yellow triangle we have:
𝐴2 = 1

2𝑑𝑟𝑥𝑏𝑎𝑠𝑒 ≈ 1
2(𝑣//𝑑𝑡) ⋅ (𝑣⟂𝑑𝑡) = 1

2𝑣//𝑣⟂𝑑𝑡2.

The total area traced out by the earth orbit during 𝑑𝑡 is thus in good approximation:

𝑑𝐴 = 𝐴1 + 𝐴2 = 1
2
(𝑟𝑣⟂ + 𝑣//𝑣⟂𝑑𝑡)𝑑𝑡 (2.241)

We divide both sides by 𝑑𝑡 and take the limit 𝑑𝑡 → 0:

𝑑𝐴
𝑑𝑡

= (1
2
𝑟𝑣⟂ + 1

2
𝑣⟂𝑣//𝑑𝑡) → 1

2
𝑟𝑣⟂ (2.242)

In stead of 𝑣⟂ we can also write 𝑝⟂
𝑚 :

𝑑𝐴
𝑑𝑡

= 1
2𝑚

𝑟𝑝⟂ (2.243)

But 𝑟𝑝⟂ is the magnitude of ⃗𝑟 × ⃗𝑝. And that is the magnitude of the angular momentum: 𝑙 =
| | ⃗𝑟 × ⃗𝑝 | | = 𝑟𝑝⟂!!!

We know 𝑙 is constant, thus we have found:

𝑑𝐴
𝑑𝑡

= 1
2𝑚

𝑟𝑝⟂ = 𝑙
2𝑚

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.244)

We can easily integrate this equation:

𝑑𝐴
𝑑𝑡

= 𝑙
2𝑚

→ 𝐴(𝑡) = 𝑙
2𝑚

𝑡 + 𝐶 (2.245)



We can set the constant 𝐶 to zero at some point in time 𝑡0 and start counting the increase of
the swept area. But we immediately infer that if we check the swept area between 𝑡 and 𝑡 +
Δ𝑡, this will be Δ𝐴 = 𝑙

2𝑚Δ𝑡 regardless of where the earth is in its orbit. In words: in equal
time intervals, the earth sweeps an area that is the same for any position of the earth. We
have established the Equal Area Law!

2.4.6.2 Newton’s theory and Kepler’s Laws - part 2
We have:

• The sun is replaced by a force field originating at the origin. This force field is a central
force.

1. Thus, the angular momentum is conserved.
2. The orbit is in a plane: we deal with a 2-dimensional problem.

• The force is conserved: a potential exists.

Based on these, we will derive Kepler’s laws only using Newtonian Mechanics. This is
easiest in polar coordinates (𝑟, 𝜙). However, in this course we do not deal with these
coordinates. We will thus give a coarse overview of the steps that should be taken.

The first thing we notice, is that the constant angular momentum provides a constraint on
the relation between ⃗𝑟 and ⃗𝑝. This constraint can be used to rewrite the kinetic energy
𝐸𝑘𝑖𝑛 = 1

2𝑚𝑣2 into 𝐸𝑘𝑖𝑛 = 1
2𝑚 ̇𝑟2 + 𝑙2

2𝑚𝑟2 .

What does this mean? The coordinate 𝑟 is the distance from the sun to the earth. Its time
derivative ( ̇𝑟 = 𝑑𝑟

𝑑𝑡 = 𝑣𝑟) is the velocity of the earth away from the sun. This is called the
radial component of the velocity. Figure 22 illustrates this.

Figure 2.136:  The coordinate 𝑟 is the distance from the sun to the earth. Its time derivative
( ̇𝑟 = 𝑑𝑟

𝑑𝑡 = 𝑣𝑟) is the velocity of the earth away from the sun.

It is important to realize that ̇𝑟 tells us if we are moving such that we are getting closer to
the sun or further away. But it does not tells us how we move ‘around’ the sun. For that we
need the information of the component of the velocity perpendicular to ⃗𝑟 (the other dashed
vector in the figure).

So, it seems that we are working with incomplete information. And in a sense we do. But it
will turn out to be very useful to understand the physics of the earth’s orbit.

We already saw that in this case gravity is a conservative force. The potential energy is
found by solving 𝑉 (𝑟) = − ∫𝑟

𝑟𝑟𝑒𝑓

⃗𝐹𝑔 ⋅ 𝑑 ⃗𝑟. We can plug in ⃗𝐹𝑔 = −𝐺𝑚𝑀
𝑟2 𝑟̂. Thus only the

radial coordinate is of importance in the inner product in the integral. Furthermore, we will
use as reference boundary: ∞. Thus, the potential energy is:



𝑉 (𝑟) = − ∫
𝑟

𝑟𝑟𝑒𝑓

⃗𝐹𝑔 ⋅ 𝑑 ⃗𝑟

= 𝐺𝑚𝑀 ∫
𝑟

∞

𝑑𝑟
𝑟2

= −𝐺𝑚𝑀
𝑟

(2.246)

Thus, energy conservation can be written as:

1
2
𝑚(𝑣2

𝑥 + 𝑣2
𝑦) − −𝐺𝑚𝑀

𝑟
= 𝐸0 = 𝑐𝑜𝑛𝑠𝑡 (2.247)

As expected: we have an equation with two unknowns (𝑥(𝑡), 𝑦(𝑡)). Once we solved the
problem, we will thus have the coordinates of the planet’s trajectory as a function of time.
However, we will not do that. Reason: it is complicated and we don’t need it! What we need
is to find what kind of figure the trajectory is.

Our first step is to bring the number of unknowns in the energy equation down from two to
one. For that, we use 𝐸𝑘𝑖𝑛 = 1

2𝑚 ̇𝑟2 + 𝑙2
2𝑚𝑟2 .

1
2 ̇𝑟2 + 𝑙2

2𝑚𝑟2 − −𝐺𝑚𝑀
𝑟

= 𝐸0 = 𝑐𝑜𝑛𝑠𝑡 (2.248)

Now we have an equation with only one unknown 𝑟(𝑡).

We can interpret this in a different way: the second term, with the angular momentum,
originates from kinetic energy, but now looks like a potential energy. And that is exactly
what we are going to do: treat it as a potential energy.

Hence, we can first inspect the global features of our energy equation. Notice that the
gravity potential energy is an increasing function of the distance from the planet to the sun
(located and fixed in the origin). This shows that the underlying force attractive is. The new
part, coming from angular momentum, on the other hand is a decreasing function of
distance. Thus, the related force is repelling.

We can make a drawing of the energy. See Figure 23.

Figure 2.137:  Energies related to our planet, with a minimum around 1.5𝑒11𝑚.



The blue line is the potential energy of gravity. The red one stems from the kinetic energy
associated with the angular velocity. The black line is the sum of the two, a kind of effective
potential:

𝑈𝑒𝑓𝑓 = 𝑙2

2𝑚𝑟2 − −𝐺𝑚𝑀
𝑟

(2.249)

We see, that the energy cannot be just any value: the kinetic energy of our quasi-one-
dimensional particle (1

2𝑚 ̇𝑟2) cannot be negative and the total potential energy has,
according to Figure 23 a clear minimum. The total energy cannot be below this minimum.
On the other hand: there is no maximum.

Case 1: Effective potential = minimal

Suppose, we would prepare the system such that its total energy was equal to the
minimum of the black line, i.e. of the total potential energy. Then, of course, via the
arguments we have given above this is only possible if the kinetic energy is zero.

𝐸𝑘𝑖𝑛 + 𝑈𝑒𝑓𝑓(𝑟) = 𝑈𝑒𝑓𝑓,𝑚𝑖𝑛 ⇒ 𝐸𝑘𝑖𝑛 = 0 (2.250)

This implies that ̇𝑟 = 0:

𝐸𝑘𝑖𝑛 = 1
2
𝑚 ̇𝑟2 = 0 → ̇𝑟 = 0 (2.251)

At first glance, this seems strange: ̇𝑟 = 0 suggests that the earth doesn’t move, it has
zero velocity. That would indeed be strange: after all we are dealing here with a planet
that is attracted via gravity towards the sun. How can it possible have zero velocity?

We are about to make a mistake: ̇𝑟 = 0 doesn’t mean that the velocity is zero. It means
that 𝑟(𝑡) = 𝑐𝑜𝑛𝑠𝑡. The planet still has a velocity perpendicular to its position vector ⃗𝑟.
Earlier we found: 𝑙 = 𝑚𝑟𝑣⟂ = 𝑐𝑜𝑛𝑠𝑡. We now have, since

̇𝑟 = 0 → 𝑟 = 𝑟0 = 𝑐𝑜𝑛𝑠𝑡, 𝑙 = 𝑚𝑟0𝑣⟂ = 𝑐𝑜𝑛𝑠𝑡 → 𝑣⟂ = 𝑙
𝑚𝑟0

= 𝑐𝑜𝑛𝑠𝑡 (2.252)

Thus, if a planet orbits its sun such that its (pseudo-)potential 𝑈𝑒𝑓𝑓 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚, then
its orbit is a circle of radius 𝑟0 that corresponds to the minimum in 𝑈𝑒𝑓𝑓  and the planet
has a velocity that is constant in magnitude 𝑣 = 𝑙

𝑚𝑟0
.

Case 2: Effective potential < Total energy < 0

Next, we consider a case where the total energy of the planet has a value between the
minimum of the curve of the effective potential and 0. Call the value of the energy 𝐸2.

From Figure 24 we see that the planet will now be confined to an area where the
effective potential is either equal to or smaller than this particular value 𝐸2



Figure 2.138:  Total energy between 0 and minimum of effective potential.

Thus, the trajectory is confined between 𝑟 = 𝑟𝑎 and 𝑟 = 𝑟𝑏. At both these end points,
the planet will have zero radial velocity: ̇𝑟𝑎 = ̇𝑟𝑏 = 0. However, as before, the planet will
still have angular momentum and thus still have a non-zero velocity. The planet will
travel in the (𝑥, 𝑦)-plane between 𝑟 = 𝑟𝑎 and 𝑟 = 𝑟𝑏. How? We don’t know yet.

N.B. Do realize, that the velocity is for this case not a constant. We already have
established that it is linked to the angular momentum (which is a constant) and the
distance to the origin.

Thus, if the planet is closer to 𝑟𝑎 it moves faster than close to 𝑟𝑏. But it cannot escape
from 𝑟𝑎 < 𝑟(𝑡) < 𝑟𝑏.

Case 3: Total energy > 0

Finally, we take the case that the total energy of the planet is positive, say a value of 𝐸3
in Figure 25. Now we see that the planet can approach the sun, but not closer than a
distance 𝑟 = 𝑟𝑐. The planet is attracted to the sun, but after reaching the closest distance
𝑟 = 𝑟𝑐 it will move away and eventually reach infinity. Again note: at 𝑟 = 𝑟𝑐, the planet
does have a non-zero velocity.

Figure 2.139:  Total energy larger than 0.

2.4.6.3 Ellipsoidal orbits
We are left with the task of showing that planets ‘circle’ the sun in an ellipse. From the
above, we now know that this must mean that the total energy is smaller than zero: 𝐸 < 0.
We will not go over the details of the derivation, but leave that for another course.

The outcome of the analysis would be the following expression for the orbit in case of an
ellipse:

(𝑥 + 𝑒𝑎)2

𝑎2 + 𝑦2

𝑏2 = 1 (2.253)

Figure 2.140:  Ellips in Cartesian coordinates.

This is an ellipse with semi major and minor-axis 𝑎 and 𝑏, respectively. The center of the
ellipse is located at (−𝑒𝑎, 0). Note that the sun is in the origin and that seen from the center
of the ellipse, the origin is at one of the focal points of the ellipse. Consequently, the orbit is
not symmetric as viewed from the sun. We notice this on earth: the summer and winter



(when the sun is closest respectively furthest from the sun) are not symmetric, even if we
take the tilted axis of the earth into account.

The half and short long axis are given by:

𝑎 = 𝛼
1 − 𝑒2 = 𝐺𝑀𝑚

2 | 𝐸 |
(2.254)

𝑏 = 𝑎𝛼 = 𝑙2

2𝑚 | 𝐸 |
(2.255)

with

𝑒 = √1 + 2𝐸𝑙2
(𝐺𝑀𝑚)2𝑚

(2.256)

and

𝛼 ≡ 𝑙2

2𝐺𝑀𝑚2 (2.257)

This type of curve is know as the conic sections. That is, they can be found by intersecting a
cone with a plane. See the animation below, where a plane is at various positions and at
various angles intersecting a cone.

Figure 2.141:  Conic sections animation created by Sara van der Werf, used with permission.

Note that in the definition of 𝑒, the total energy of the system plays a role. This energy can
be negative (see Figure 23). The minimum value of the effective potential energy is easily
computed. It is 𝑈𝑒𝑓𝑓,𝑚𝑖𝑛 = −1

2
(𝐺𝑚𝑀)2𝑚

𝑙2  and is realized when the planet is at a distance 𝑟 =
𝑙2

𝐺𝑀𝑚2 . For this case we have 𝑒 = 0 and the planet is moving in a circle around the sun, as
we already argued above.

For 0 ≤ 𝑒 < 1 the orbit is an ellipse as Kepler already had postulated (for these values of 𝑒
the orbit is a closed one).

For 𝑒 = 1, the orbit is a parabola: the object will eventually move to infinity where it has
exactly zero radial velocity.

Finally, for 𝑒 > 1 the trajectory is a hyperbola with the planet again moving to infinity.

https://www.saravanderwerf.com/conics-gifs-why-gifs-are-my-new-addiction/


Conclusion: according to Newton’s laws of mechanics, combined with the
Gravitation force proposed by Newton, planets must move in ellipses around their
star.

This holds for our solar system, but for any other star with planets as well. Research has
shown that there are hundreds of solar systems out in the universe with thousands of
planets moving around their star. See e.g. https://exoplanets.nasa.gov/

2.4.6.4 Kepler 3
We are left with proving Kepler’s third law:

𝑇 2
𝐴

𝑅3
𝐴

= 𝑇 2
𝐵

𝑅3
𝐵

= 𝑐𝑜𝑛𝑠𝑡 (2.258)

Now that we know the orbit, this is not difficult. We concentrate on the motion during one
lapse (one ‘year’). From Keppler’s 1𝑠𝑡 law we know that the area a planet sweeps out of its
ellipse is given by

𝐴(𝑡) = 𝑙
2𝑚

𝑡 + 𝐶 (2.259)

where 𝐶 is an integration constant. Furthermore, this way of writing makes that the area
swept keeps increasing: after one round along the ellipse, we simply keep counting.

However, we can easily back out what happens after exactly one round, or one ‘year’. The
total area swept is then, of course, the area of the ellipse itself, that is: in one year (time 𝑇 )
the area swept is 𝜋𝑎𝑏. Hence we conclude:

𝐴(𝑇 ) = 𝜋𝑎𝑏 ⇒ 𝜋𝑎𝑏 = 𝑙
2𝑚

𝑇 (2.260)

If we put back what we found for 𝑎 and 𝑏, we get

𝑇 2

𝑎3 = 4𝜋2

𝐺𝑀
(2.261)

Thus, indeed Kepler was right. Moreover, we note that the constant is only depending on
the mass of the sun. The same law will hold for other solar systems, but with a different
constant.

In Figure 28 Kepler’s third law is shown for our solar system. The red data points are based
on the measured ‘year’ of each planet and the distance to the sun. The blue line is the
prediction from Newton’s theory.

Figure 2.142:  Kepler 3 for our solar system.

https://exoplanets.nasa.gov/


Haley’s comet

The planets aren’t the only objects that move around the sun. Several icy, rocky smaller
objects are trapped in a closed orbit around the sun. These objects, comets from the
Greek word for ‘long-haired star’, are left-overs from when our solar system was formed,
some 4.6 billion years ago. There are many comets in our solar system. More than 4500
have been identified, but there are probably much more. Usually the orbit of a comet, if
it’s a closed one, has a high eccentricity (i.e. close to 1). Moreover, their orbital period
may be very long.

One of the best visible comets is Haley’s comet. However, its orbital period is about 75
years. It last appeared in the inner parts of the Solar System in 1986. So, you will have to
wait until mid-2061 to see it again.

Figure 2.143:  Trajectory of Haley’s comet. From Wikimedia Commons, licensed under
CC-BY 4.0.

2.4.7 Speed of the planets & dark matter
Starting from Kepler 3, we can compute the orbital speed of a planet around the sun

𝑇 2 = 4𝜋2

𝐺𝑀
𝑎3

𝜔2 = 𝐺𝑀
𝑎3 , 𝑇 = 2𝜋

𝜔
, 𝜔 = 𝑣

𝑟
, 𝑎 ≈ 𝑟

⇒ 𝑣 = √𝐺𝑀
𝑟

(2.262)

Indeed if we measure the speed of the planets in the solar system this prediction holds, the
velocity drops with the distance from the sun as ∝ 𝑟−1/2 (see figure). As 𝑀  we use the mass
of the sun here.

https://commons.wikimedia.org/wiki/File:Halley%27s\_Comet\_animation.gif


Figure 2.144:  From LibreTexts Physics, licensed under CC BY-NC-SA 4.0.

The distance is measured in Astronomical Units [AU], the distance from the earth to the sun
(about 8.3 light minutes). Note that the earth is moving with an unbelievable 30 km/s, that is
10⁵ km/h! Do you notice any of that? We will use this motion later with the Michelson-
Morley experiment.

If we plot the same speed versus distance curve not for the planets in our solar system, but
for stars orbiting the center of our galaxy, the milky way, then the picture looks very
different. The far away stars orbit at a much higher speed than expected and the form of the
found curve does not match ∝ 𝑟−1/2.

Figure 2.145:  Adapted from Wikimedia Commons, licensed under CC-SA 3.0.

This mismatch is not understood to this day! The mass 𝑀  here is calculated from the visible
stars and the supermassive black holes at the center of the galaxy. But even if the mass is
calculated wrongly, the shape of the dependency does not match. It turns out, this mismatch
is observed in all galaxies! Apparently the law of gravity does not hold for large distances or
there must be extra mass that increases the speed that we do not see. This mismatch has
lead to the postulation of dark matter and an alternative formulation for the laws of gravity.
This is the most disturbing problem in physics today; second is probably the interpretation
of measurement in quantum mechanics (collapse of the wave function/Kopenhagen
interpretation of Quantum Mechanics; multiverse theories).

The majority of all matter in the universe is believed to be dark. And we have no clue what
it could be! Most scientist even think it must be non-baryonic, that is, other stuff than our
well-known protons or neutrons. It remains most confusing.

The usual distance unit for distances in astronomy outside the solar system is not light years
(ly), but parsec [pc], or kpc, or Mpc. One parsec is about 3.3 ly (or 10¹³ km). Note: stars
visible to the eye are typically not more than a few hundred parsec away. The Milky Way is
perfectly visible to the naked eye as a band/stripe of “milk” sprayed over the night sky. But
you cannot see it anywhere close to Delft, there is much too much light from cities and
greenhouses. Go to Scandinavia in the winter (“wintergatan”) or any place remote where
there are few people. The reason you see a “band” in the night sky, is that the Milky Way is
a spiral galaxy, sort of pancake shaped, and you see the band in the direction of the pancake.

https://phys.libretexts.org/Bookshelves/Astronomy\_\_Cosmology/Big\_Ideas\_in\_Cosmology\_%28Coble\_et\_al.%29/08%3A\_Dark\_Matter/8.02%3A\_Velocities\_Mass\_and\_Gravity-\_the\_Solar\_System
https://en.wikipedia.org/wiki/Astronomical\_unit
https://commons.wikimedia.org/wiki/File:Rotation\_curve\_of\_the\_Milky\_Way.png
https://en.wikipedia.org/wiki/Dark\_matter
https://en.wikipedia.org/wiki/Alternatives\_to\_general\_relativity
https://en.wikipedia.org/wiki/Measurement\_in\_quantum\_mechanics
https://en.wikipedia.org/wiki/Baryon
https://en.wikipedia.org/wiki/Parsec


2.4.8 Examples, exercises and solutions
Updated: 13 okt 2025



2.5 Conservation Laws / Galilean Transformation
Updated: 20 okt 2025 In the previous chapters, we have seen that from Newton’s three laws,
we can obtain conservation laws. That means, under certain conditions (depending on the
law), a specific quantity cannot change.

These conservation equations are very important in physics. They tell us that no matter
what happens, certain quantities will be present in the same amount: they are conserved.

Conservation of energy follows from the concept of work and potential energy.
Conservation of momentum is a direct consequence of N2 and N3, as we will see below. And
finally, under certain conditions, angular momentum is also conserved. In this chapter we
will summarize them. The reason is: their importance in physics. These laws are very
general and in dealing with physics questions they give guidance and very strict rules that
have to be obeyed. They form the foundation of physics that cannot be violated. They
provide strong guidance and point at possible directions to look for when analyzing
problems in physics.

2.5.1 Conservation of Momentum
Consider two particles that mutually interact, that is they exert a force on each other. For
each particle we can write down N2:

𝑑𝑝⃗1
𝑑𝑡 = ⃗𝐹21

𝑑𝑝⃗2
𝑑𝑡 = ⃗𝐹12 = − ⃗𝐹21

} → 𝑑
𝑑𝑡

( ⃗𝑝1 + ⃗𝑝2) = 0 ⇒ ⃗𝑝1 + ⃗𝑝2 = 𝑐𝑜𝑛𝑠𝑡 (2.263)

The total (linear) momentum is conserved if only internal forces are present; “action-
reaction pairs” always cancel out.
This law has no exception: it must be obeyed at all times. The total momentum is constant,
momentum lost by one must be gained by others.

2.5.2 Conservation of Energy
As we have seen when deriving the concept of potential energy, for a system with
conservative forces the total amount of kinetic and potential energy of the system is
constant. We can formulate that in a short way as:

∑ 𝐸𝑘𝑖𝑛 + ∑ 𝑉 = 𝑐𝑜𝑛𝑠𝑡 (2.264)

Again: energy can be redistributed but it cannot disappear nor be formed out of nothing.

If non-conservative forces are present, the right hand side of the equation should be
replaced by the work done by these forces.

∑ 𝐸𝑘𝑖𝑛 + ∑ 𝑉 = ∑ 𝑊 (2.265)

In many cases this will lead to heat, a central quantity in thermodynamics and another form
of energy. The “loss” of energy goes always to heat. With this ‘generalization’ we have a
second law that must always hold. Energy cannot be created nor destroyed. All it can do is
change its appearance or move from one object to another.

2.5.3 Conservation of Angular Momentum
Also angular momentum can be conserved. According to its governing law 𝑑 ⃗𝑙

𝑑𝑡 = ⃗𝑟 × ⃗𝐹  it
might seem that we can for two interacting particles again invoke N3 “action = -reaction”
and the terms with the forces will cancel out. But we need to be a bit more careful, as cross
products are involved which are bilinear (a type of mathematical function or operation that
is linear in each of two arguments separately, but not necessarily linear when both are
varied together). So, let’s look at the derivation of “conservation of angular momentum” for
two interacting particles:



𝑑 ⃗𝑙1
𝑑𝑡 = ⃗𝑟1 × ⃗𝐹21

𝑑 ⃗𝑙2
𝑑𝑡 = ⃗𝑟2 × ⃗𝐹12 = − ⃗𝑟2 × ⃗𝐹21

} → 𝑑
𝑑𝑡

( ⃗𝑙1 + ⃗𝑙2) = ( ⃗𝑟1 − ⃗𝑟2) × ⃗𝐹21 (2.266)

As we see, this is only zero if the vector ⃗𝑟1 − ⃗𝑟2 is parallel to the interaction forces (or zero).
We called this a central force. Luckily, in many cases the interaction force works over the
line connecting the two particles (e.g. gravity). In those cases, the angular momentum is
conserved. Mathematically we can write this as:

𝑖𝑓 ⃗𝐹21 | | ( ⃗𝑟1 − ⃗𝑟2) ⇒  ⃗𝑙1 + ⃗𝑙2 = 𝑐𝑜𝑛𝑠𝑡 (2.267)

Conservation of Mass

Within the world of Classical Mechanics, mass is also a conserved quantity. Whatever
you do, what ever the process the total mass in the system stays the same. We cannot
create nor destroy mass. From more modern physics we know that this is not true. On
the one hand we can destroy mass. For instance, when an electron and a positron collide,
they can annihilate each other resulting in two photons, i.e. ‘light particles’ that do not
have mass. Similarly, we can create mass out of light. This is the inverse of the
annihilation: pair production. If we have a photon of at least 1.022 MeV(= 1.6610−13J),
then -under the right conditions- an electron-positron pair can be created.

Moreover, Albert Einstein showed that mass and energy are equivalent - expressed via
his famous equation 𝐸 = 𝑚𝑐2. His theory of Relativity showed us that in collisions at
extreme velocities mass is not conserved: it can both be created or disappear. Rephrased:
it is actually part of the energy conservation, mass is in that context just a form of
energy.

Emmy Noether, symmetries and conservation laws

We discussed the conservation laws as consequences of Newton’s Laws. That in itself is
ok. However, there is a deeper understanding of nature that leads to these conservation
laws. And from the conservation laws we can go to Newton’s Laws, thus ‘reversing the
derivations’ and starting from this new, different way of looking at nature.

What is it and how do we know? To answer this question we have to resort to Emmy
Noether, a German mathematician. Noether made top contributions to abstract algebra.
She proved, what we now call, Noether’s first and second theorems, which are
fundamental in mathematical physics. Noether is often named as one of the best if not
the best female mathematicians ever lived. Her work on differential invariants in the
calculus of variations has been called “one of the most important mathematical theorems
ever proved in guiding the development of modern physics”.

Figure 2.146:  Amalie Emmy Noether (1882-1935). From Wikimedia Commons, public
domain.

Noether shows, that if a dynamic system is invariant under a certain transformation,
that is it has a symmetry, then there is a corresponding quantity that is conserved. Ok,
pretty abstract. What does it mean, any examples? Yes! Here is one.

https://commons.wikimedia.org/wiki/File:Noether.jpg


In physics we believe that it does not matter if we do an experiment now and repeated it
exactly under the same conditions an hour later, the outcome will be the same. Or
rephrased: if we translate it in time, the outcome is the same; the laws of physics are
invariant. This is in mathematical terms a symmetry, a symmetry with respect to time.
Noether’s theorem then shows, that there is a conserved quantity and this quantity is
energy. Hence, based on the idea that time itself has no effect on physical laws, we
immediately arrive at conservation of energy.

Second example: we also believe that place or position in the universe doesn’t matter.
The physical laws are not only always the same (time invariance), they are also the same
everywhere (space invariance). From this symmetry, via Noether’s work, we
immediately get that momentum is a conserved quantity. Thus, these two invariances or
symmetries -time and space - provide us directly with conservation of energy and
momentum and from that we could easily derive Newton’s second and third law. Much
of modern physics is now built on the ideas put forward by Emmy Noether. That goes
from quantum mechanics to quarks to string theory.

2.5.4 Galilean Transformation
There is one important element of Classical Mechanics that we have to add: for which type
of observer do Newton’s Laws hold? The original thought was: for inertial observers. These
are observers that are at rest with respect to an inertial frame of reference.

But this merely shifts the question to: what is an inertial frame of reference? One possible
answer is: an inertial frame of reference is a frame in which Newton’s Laws hold. That is: a
particle on which, according to an observer in such a frame, no net force is acting will keep
moving at a constant velocity.

All inertial frames of reference move at a constant velocity with respect to each other. They
cannot accelerate. To picture what it means, an inertial frame of reference or an inertial
observer, we sometimes use the idea that such a frame or observer moves at a constant
velocity with respect to the ‘fixed’ stars. And indeed, for a long time people believed that the
stars were fixed in space. But from more modern times we do know, that this is not the case:
stars are not fixed in space nor do they move at a constant velocity.

Later in the study of Classical Mechanics, we will see, that it is possible to do without the
restriction that Newton’s Law strictly speaking only hold in inertial frames. But for now, we
will stick to inertial frames and look at the ‘communication’ between two observers in two
different inertial frames.

An important requirement of any physical law is that it looks the same for all inertial
observers. That doesn’t mean that the outcome of using such a law is the same. As a trivial
example, take two inertial observers S and S’. According to S, S’ moves at a constant
velocity, 𝑉 , in the 𝑥-direction. S’ observes a mass 𝑚 that is not moving in the frame of
reference of S’. For simplicity, we will assume that each observer is in its own origin.

S’ rightfully concludes, based on Newton’s 1𝑠𝑡 law that no force is acting on 𝑚. S agrees, but
doesn’t conclude that 𝑚 is at rest. This is trival: both observers can use Netwon’s second
law which for this case states that 𝑑𝑝⃗

𝑑𝑡 = 0 → ⃗𝑝 = 𝑐𝑜𝑛𝑠𝑡 → ⃗𝑣 = 𝑐𝑜𝑛𝑠𝑡. But the constant is
not the same in both frames.

To make the above loose statements more precise. We have two coordinates systems CS and
CS’. The transformation between both is given by a translation of the origin of S’ with
respect to that of S.



2.5.4.1 Communication Protocol
We need to have a recipe, a protocol that translates information from 𝑆′ to 𝑆 and vice versa.

This protocol is called the Galilean Transformation between two inertial frames, 𝑆 and 𝑆′.

According to observer 𝑆, 𝑆′ is moving at a constant velocity 𝑉 . Both observers have chosen
their coordinate system such that 𝑥 and 𝑥′ are parallel. Moreover, at 𝑡 = 𝑡′ = 0, the origins
𝑂 and 𝑂′ coincide. The picture below illustrates this.

Figure 2.148:  Two inertial observers S and S’ and their coordinate systems.

Consider for simplicity a 2D point 𝑃  with coordinates (𝑥′, 𝑦′) and time 𝑡′ for 𝑆′. What are
the coordinates according to 𝑆? First of all: in classical mechanics, there is only one time,
that is: 𝑡 = 𝑡′. Until the days of Einstein this seemed self evident; we now know that nature
is more complex.

For the spatial coordinates, we see immediately: 𝑦 = 𝑦′. And for the 𝑥-coordinate 𝑆 can do
the following. To go to the 𝑥-coordinate of 𝑃 , first 𝑆 goes to the origin 𝑂′ of 𝑆′. 𝑂′ is a
distance 𝑉 𝑡 from 𝑂. Thus, the distance to 𝑃  along the 𝑥-axis is 𝑉 𝑡 + 𝑥′. If we sum the
above up, we can formulate the relation between the coordinate system of the two
observers. This transformation is the Galilean Transformation, or GT for short.

Galilean Transformation

𝑥′ = 𝑥 − 𝑉 𝑡
𝑦′ = 𝑦
𝑡′ = 𝑡

(2.268)

2.5.4.2 Velocity is relative; acceleration is absolute
A direct consequence of the Galilean Transformation is that velocity is observer-dependent
(not surprising), but for observers in inertial frames, observed velocities differ by a constant
velocity vector.

In what follows we will derive the relations between velocity and acceleration as observed
by S and S’. Note that we need to be precise in our notation: 𝑆′ denotes quantities with a
prime (‘), but 𝑆 does not. This is obvious for the coordinates as 𝑆 uses 𝑥 whereas 𝑆′ will
write 𝑥′. It is, however, also wise to use primes on the velocity: 𝑆 will denote the 𝑥-
component as: 𝑣𝑥 = 𝑑𝑥

𝑑𝑡 . So, 𝑆′ will note denote velocity by 𝑣, but by 𝑣′. Hence 𝑆′ will write
𝑣′𝑥′ = 𝑑𝑥′

𝑑𝑡′ . Now, obviously, 𝑡′ = 𝑡 so we could drop the prime on time, but it is handy to do
that in the second step.

First we look at velocity.

𝑣′𝑥′ ≡ 𝑑𝑥′
𝑑𝑡′

⇒ 𝑣′𝑥′ = 𝑑(𝑥 − 𝑉 𝑡)
𝑑𝑡

= 𝑣𝑥 − 𝑉

𝑣′𝑦′ ≡ 𝑑𝑦′
𝑑𝑡′

⇒ 𝑣′𝑦′ = 𝑑𝑦
𝑑𝑡

= 𝑣𝑦

(2.269)

Thus indeed velocity is ‘relative’: different observers find different values, but they do have a
simple protocol to convert information from the other colleague to their own frame of
reference.

Secondly, we look at acceleration.



𝑎′𝑥′ ≡ 𝑑𝑣′𝑥′
𝑑𝑡′

⇒ 𝑎′𝑥′ = 𝑑(𝑣𝑥 − 𝑉 )
𝑑𝑡

= 𝑎𝑥

𝑎′𝑦′ ≡
𝑑𝑣′𝑦′

𝑑𝑡′
⇒ 𝑎′𝑦′ =

𝑑𝑣𝑦

𝑑𝑡
= 𝑎𝑦

(2.270)

So, we conclude: acceleration is the same for both observers.

Consequently, N2 holds in both inertial systems if we postulate that 𝑚′ = 𝑚. In other
words: mass is an object property that does not depend on the observer.

Thus, two observers, each with its own inertial frame of reference, will both see the same
forces: 𝐹 = 𝑚𝑎 = 𝑚′𝑎′ = 𝐹′.

This finding is stated as: Newton’s second law is invariant under Galilean Transformation.
Invariant means that the form of the equation does not change if you apply the Galilean
coordinate transformation. Later we will expand this to Lorentz invariant transformation in
the context of special relativity. The concepts of invariance is very important in physics as
hereby we can formulate laws that are the same for everybody (loosely speaking).
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2.5.5 Exercises, examples & solutions
Updated: 18 jan 2026

2.5.5.1 Worked Example
In class you have seen the Superballs example. Let’s dive more deep into what is happening.

Figure 2.149:  Watch the superballs again.

Consider Figure 2, if you let a smaller and a larger ball drop together, stacked on top of each
other, the smaller ball will bounce back much stronger (higher) than if you let the small ball
fall without stacking it on the lager ball. How can that happen?

Figure 2.150:  Bouncing balls.

To explain this we use the Galilean Transformation (GT). Consider the following situation
depicted in Figure 2.

• 1 Both balls are falling with velocity ⃗𝑣 towards the ground.
• 2a The larger ball just hit the ground. As the mass of the ground is much larger than

that of the large ball, it is (elastically) reflected, i.e. the direction of the velocity is
reversed but the magnitude stays the same. The small ball is still moving downwards
with ⃗𝑣.

• 2b We apply a GT of the observer (yellow star) from the ground to an observer moving
with the larger ball. The observer moving with the larger ball sees the smaller ball
moving with 2 ⃗𝑣 towards it.

• 3a The smaller ball hits the larger ball and is reflected due to its smaller mass. In the
frame of the observer on the larger ball, the smaller ball now moves with 2 ⃗𝑣 away from
it.

• 3b We apply a GT of the observer (yellow star) from the larger ball back to an observer
on the ground. For the observer on the ground the larger ball has velocity ⃗𝑣 upwards
from 2a, therefore the smaller ball has velocity 3 ⃗𝑣 upwards.

The smaller ball has now velocity 3 ⃗𝑣 instead of ⃗𝑣 if you drop it without the larger ball. NB: If
you would use three balls instead of two, the third ball would have a velocity of 7 ⃗𝑣 using the
same reasoning as above.



Figure 2.151:  Bouncing of three (super)balls.

How much higher does the smaller ball fly with velocity 3 ⃗𝑣 compared to ⃗𝑣?

Answer
We equate the kinetic energy when the ball is just reflected with the potential energy when
the ball reached it maximal height before falling back.

1
2
𝑚𝑣2 = 𝑚𝑔ℎ ⇒ ℎ = 𝑣2

2𝑔
(2.271)

Therefore the ball with 3𝑣 flies 9 times higher.

What is very fishy about this whole outcome?
In situation 1 the kinetic energy is 12𝑚𝑠𝑣2 + 1

2𝑚ℓ𝑣2, but in situation 3b it is 12𝑚𝑠(3𝑣)2 +
1
2𝑚ℓ𝑣2 while the potential energy is zero in both cases. This clearly does not add up! But
energy must be conserved under all circumstances!

The conclusion is, that we did make an approximation and did not solve the energy and
momentum conservation equations for elastic collisions. Even for the case 𝑀 ≫ 𝑚 there is
some momentum transfer. If you solve for the velocity of 𝑚 after the collision with 𝑀 , you
obtain

𝑣′ =
𝑚
𝑀 − 1
𝑚
𝑀 + 1

𝑣 (2.272)

For 𝑀 ≫ 𝑚 you indeed see 𝑣′ = −𝑣. Thus the smaller ball will have a smaller velocity than
reasoned above and the larger ball with also have a smaller velocity (in the experiment you
can clearly notice that it does not fly as high as when it drops without the small ball on top).
In real life, the balls also deform which makes the collision inelastic.

In a later chapter we will deal with collisions and pay attention to this limit 𝑀 ≫ 𝑚 in
much more detail.

2.5.5.2 Examples

Example: 8.1

Consider yourself biking at a constant velocity on an unlikely day with zero wind. Still,
you experience a frictional force from the air, with the following observation: the faster
you bike, the larger this force. An experimentalist is trying to measure the friction force
of the air and relate it to your velocity. She finds that, by and large, these forces turn out
to scale with the square of your velocity 𝑣𝑏

𝐹𝑓 ∝ 𝑣2
𝑏 (2.273)



Figure 2.152:  Air resistance on cyclist.

Understanding the Galilean transformation, you immediately see that this can’t be
correct. In your frame of reference, your velocity is zero. And thus, the friction force
would be zero. But that cannot be true: both observers should see the same forces. What
you see is that the air is blowing at a speed 𝑣𝑎𝑖𝑟 − 𝑣𝑏 past you. And indeed, the faster
you bike, according to the experimentalist, the faster you see the air moving past you:
velocity is relative.

You quickly realize that a proper description of the air friction must depend on the
relative velocity between you and the air. Relative velocities are invariant under Galilean
transformation:

𝐹𝑓 ∝ (𝑣𝑏 − 𝑣𝑎𝑖𝑟)
2 (2.274)

Example: 8.2

Riding a bike while it rains. You have done this hundreds of times. Your front gets
soaked, while the backside of your coat stays dry. Or if you have a passenger on your
carrier he/she will not get wet, while you take all the water. From a GT to the reference
frame of the biker it is obvious why this is the case. The rain is not falling straight from
the sky, but at an angle towards him.

Figure 2.153:  Riding a bike in the rain.

NB: For Dutch bikers you have had this experiences with head wind and rain all your
life.

2.5.5.3 Demo
A ball is bouncing at a wall. The mass of the wall is much greater than that of the ball. So,
acceleration of the wall or changes in momentum of the wall can be ignored.

On the left side, we see this from the perspective of an observer, S, standing next to the wall.
The right side shows what observer S’, who is traveling with the ball as it moves towards
the wall, sees. Notice, that both S and S’ are inertial observers. That is, they keep their
velocity and are no part of the collision.

What would Galilei say?



Figure 2.154:  Ball bouncing at a wall.

2.5.5.4 Exercises

Exercise 1: 🌶

A train is passing a station at a constant velocity 𝑉 . At the platform, an observer 𝑆 sees
that in the middle of the train (train length 2𝐿), at 𝑡 = 0 an object is released with a
constant velocity 𝑢. The object moves towards the back of the train and, at some point in
time, will hit the back.

Inside the train, observer 𝑆′ sees the same phenomenon. Show that both find the same
time for the object hitting the back of the train.

Exercise 2: 🌶

A point particle of mass 𝑚 is sitting on a horizontal frictionless table. Gravity is acting in
the vertical downward direction.
According to your observation, 𝑚 has zero velocity. But you see the table moving at a
velocity −𝑣 in the negative 𝑥-direction. The table doesn’t stay flat, but has a bump of
height 𝐻 . What will happen to 𝑚?

Exercise 3: 🌶

Finally, it is winter. And this time, there is lots of fresh snow! You get engaged in a great
snowball fight. Your opponent has run out of ‘ammunition’ and runs away. She is at a
distance 𝐿 = 2m when she starts running at a speed of 5m/s. You throw your last
snowball at her at a speed of 10m/s.
Determine when and where the snowball hits her. Do that three times:

• Your perspective;
• Your opponent’s perspective;
• The snowballs perspective.

Next, use the Galilean Transformation and show that you could have used your
perspective and GT to find the data for the other two perspectives.

2.5.5.5 Answers

Solution to Exercise 1: 🌶



First we make a new sketch, now showing the two observers 𝑆 and 𝑆′ and their axis. We
have made the velocity of the object red, the color of 𝑆. And we have given the
coordinates of the front and back of the train in grey as these are specified according to
𝑆′. We do this, as it is is crucial to realize that we have ‘mixed’ information.

The velocity of the object is 𝑢 according to 𝑆. The observer in the train, 𝑆′, sees a
different velocity.
The observer in the train will denote the position of the front of the train by 𝑥𝑓 ′ = 𝐿
and of the back 𝑥𝑏′ = −𝐿. Both are, according to 𝑆′, fixed values. But 𝑆 will see that
differently.

According to 𝑆′, the object moves with velocity 𝑢′ = 𝑢 − 𝑉 . Note that this is a negative
value, otherwise the object will not hit the back of the train.

𝑆′ will describe the trajectory of the object by: 𝑥′(𝑡) = 𝑥′0 + 𝑢′𝑡 with 𝑥′0 = 0. Thus, the
object will hit the back of the train at:

𝑥′(𝑇 ′) = −𝐿 → 𝑢′𝑇 ′ = −𝐿 → 𝑇′ = 𝐿
−𝑢′

(2.275)

What does 𝑆 observe? It will write for the trajectory of the object 𝑥𝑜(𝑡) = 𝑢𝑡 (where we
used that the object was released in the middle of the train at 𝑡 = 0 and both observers
chose that as their origin).
According to 𝑆 also the back of the train is moving. It follows a trajectory 𝑥𝑏 = −𝐿 +
𝑉 𝑡, since at 𝑡 = 0 the back of the train was at position 𝑥 = −𝐿 according to 𝑆. The two
will collide when

𝑥𝑜(𝑇 ) = 𝑥𝑏(𝑇 ) → 𝑢𝑇 = −𝐿 + 𝑉 𝑇 → 𝑇 = 𝐿
𝑉 − 𝑢

(2.276)

Hence we have 𝑇  and 𝑇 ′ as times of collision. But we already found 𝑢′ = 𝑢 − 𝑉 . If we
substitute this in 𝑇 ′ we get

𝑇 ′ = 𝐿
−𝑢′

= 𝐿
𝑉 − 𝑢

= 𝑇 (2.277)

Thus, indeed both observers see the collision at the same moment.

Sneak Preview: much to our surprise, when we enter the world of Special Relativity, this
will no longer be the case!

Solution to Exercise 2: 🌶

The particle will ‘collide’ with the bump. This might cause the particle to start moving to
the left. How to analyse this situation?

Perhaps it is easier when we view this from the point of view of an observer moving
with the table.

Now we have a situation of a particle moving over a friction less table with velocity 𝑣. If
we use conservation of energy, we can write down:



1
2
𝑚𝑢2 + 𝑚𝑔ℎ = 𝐸0 = 1

2
𝑚𝑣2 (2.278)

where we have taken ℎ as the height above the table and denote the velocity of 𝑚 at
some point by 𝑢. The initial height is zero and the initial velocity is 𝑣.

So, if the initial velocity is such that 12𝑚𝑣2 > 𝑚𝑔𝐻 , the particle will go over the bump
and come back to height ℎ = 0. It will thus pass the bump and then continue moving
with velocity 𝑣. For the original observer this means: the bump will pass the particle and
after passing the particle is again laying still (but not at the same position!).

If, on the other hand 𝑣 is such that 12𝑚𝑣2 < 𝑚𝑔𝐻 , the particle will not reach the top of
the bump: it has insufficient kinetic energy. In stead it will stop at some height ℎ∗ = 𝑣2

2𝑔
and then fall of the bump again. It will continue with velocity −𝑣 at the flat part of the
table. To the original observer this means that 𝑚 first climbs the bump and returns to get
a velocity −2𝑣 on the flat part of the table.

The final possibility is 12𝑚𝑣2 = 𝑚𝑔𝐻 . In that case the particle will exactly reach the top
of the bump and stop there.

N.B. We have assumed that the bump is not too steep, because in such a case the particle
will have a real collision with the bump. Think, for instance, of the bump as a sudden
step. Then no matter how fast the particle is moving, it will not end up on the step, but
bounce back.

Solution to Exercise 3: 🌶

First, a sketch:

It is a 1-dimensional problem, so an 𝑥-axis will do. We denote the velocity of your
opponent (as seen by you) by 𝑣𝑜 and of the snowball 𝑣𝑠. The inertial system of you is 𝑆
and you are sitting in the origin 𝒪. Similarly, you opponents inertial system is 𝑆′ with
origin 𝒪′ and finally the snowball has inertial system 𝑆" and the snowball sits in the
origin 𝒪".

1. Your perspective

𝑥𝑠(𝑡) = 𝑣𝑠𝑡 (2.279)

𝑥𝑜(𝑡) = 𝐿 + 𝑣𝑜𝑡 (2.280)

require: 𝑥𝑠(𝑡∗) = 𝑥𝑜(𝑡∗)

→ 𝑡∗ = 𝐿
𝑣𝑠 − 𝑣𝑜

= 0.4𝑠 → 𝑥∗ = 𝑣𝑠𝑡∗ = 4𝑚 (2.281)

1. Your opponent’s perspective

𝑣′𝑠 = 𝑣𝑠 − 𝑣0 = 5𝑚/𝑠 (2.282)

require: 𝑥′𝑠(𝑡′∗) = 0 since 𝑆′ is in 𝑥′ = 0. Thus

𝑥′𝑠(𝑡′∗) = −𝐿 + 𝑣′𝑠𝑡′∗ = 0 → 𝑡′∗ = 𝐿
𝑣′𝑠

= 0.4 (2.283)

Same time of course. Position: your opponent concludes she is not moving and this she
is hit at 𝑥′ = 0.



3. The snowballs perspective.

According to the snowball 𝑣"𝑜 = 𝑣𝑜 − 𝑣𝑠 = −5𝑚/𝑠. Thus,

𝑥"𝑜 = 𝐿 + 𝑣"𝑜𝑡 (2.284)

require: 𝑥"𝑜(𝑡"∗) = 0

𝑥"𝑜(𝑡"∗) = 𝐿 + 𝑣"𝑠𝑡"∗ → 𝑡"∗ = − 𝐿
𝑣"𝑜

= 0.4𝑠 (2.285)

And, again the snowball will conclude that it all happened in its origin.

Galilean Transformation
We now have three different time/place coordinates for the event ‘snowball hits
opponent’.

𝑆 : (𝑥ℎ, 𝑡ℎ) = (4𝑚, 0.4𝑠)
𝑆′ : (𝑥′ℎ, 𝑡′ℎ) = (0𝑚, 0.4𝑠)
𝑆" : (𝑥"ℎ, 𝑡"ℎ) = (0𝑚, 0.4𝑠)

(2.286)

We could have found this directly from a GT.
a. from 𝑆 to 𝑆′: we need to take into account that at 𝑡 = 0 the origins do not coincide.
Instead 𝒪′ is shifted over a distance L w.r.t. 𝒪

𝑥′ = 𝑥 − 𝐿 − 𝑣𝑜𝑡
𝑡′ = 𝑡

(2.287)

Thus: 𝑥′ℎ = 𝑥ℎ − 𝐿 − 𝑣𝑜𝑡ℎ = 0 and we get indeed (𝑥′ℎ, 𝑡′ℎ) = (0m, 0.4s)

b. We do a similar exercise for 𝑆 to 𝑆":
𝑥" = 𝑥 − 𝑣𝑠𝑡
𝑡" = 𝑡

(2.288)

Thus: 𝑥"ℎ = 𝑥ℎ − 𝑣𝑠𝑡ℎ = 0 and we get (𝑥"ℎ, 𝑡"ℎ) = (0m, 0.4s)
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